Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MPDZ as a novel epigenetic silenced tumor suppressor inhibits growth and progression of lung cancer through the Hippo-YAP pathway

Abstract

MPDZ also named MUPP1 is involved in signal transduction mediated by the formation of protein complexes. However, the expression regulation, clinical significance, potential function, and mechanism of this gene in lung cancer remain unclear. Methylation status of MPDZ was measured by methylation-specific PCR and bisulfite genomic sequencing. Kaplan–Meier and Cox regression analyses were performed to identify the prognostic value of MPDZ. The tumor suppressing effects of MPDZ were determined in vitro and in vivo. The target molecules and signaling pathway that mediated the function of MPDZ were also identified. MPDZ methylation was identified in 61.2% of primary lung cancer tissues and most lung cancer cell lines but not in normal lung tissues. MPDZ expression was significantly downregulated in lung cancer tissues and negatively associated with DNA hypermethylation, and attenuated MPDZ expression predicted a poor outcome. Furthermore, MPDZ overexpression prominently dampened cell growth, migration, and invasion of tumor cells. Conversely, MPDZ knockdown promoted cell proliferation, migration, and invasion in vitro and in vivo. Moreover, MPDZ deficiency promotes tumor metastasis and reduces the survival of MPDZ knockout mice. Importantly, MPDZ promotes tumor suppressor ability that depends on the Hippo pathway-mediated repression of YAP. MPDZ activates the phosphorylation of YAP (Ser127) and inhibits YAP expression through stabilizing MST1 and interaction with LATS1. We first identified and validated that MPDZ methylation and expression could be a good diagnostic marker and independent prognostic factor for lung cancer. MPDZ functions as a tumor suppressor by inhibiting cell proliferation, migration, and invasion through regulating the Hippo-YAP signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MPDZ promoter CpG island region frequently hypermethylated in lung cancer tissues, plasma and sputum samples, and cell lines.
Fig. 2: MPDZ downexpressed associated with DNA methylation and had poor prognosis in lung cancer patients.
Fig. 3: MPDZ overexpression inhibits cell proliferation, migration, and invasion.
Fig. 4: MPDZ knockdown promotes cell proliferation, migration, and invasion in vitro.
Fig. 5: Knockdown of MPDZ promotes tumor progression in nude mice.
Fig. 6: MPDZ deficiency promotes tumor metastasis in knockout mouse.
Fig. 7: MPDZ regulated Hippo pathway by inhibiting YAP.
Fig. 8: MPDZ inhibited YAP through stabilizing MST1 and interaction with LATS1.
Fig. 9: Schematic diagram of epigenetic regulation, function, and molecular mechanism of MPDZ in lung cancer.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  2. Berger AH, Brooks AN, Wu X, Shrestha Y, Chouinard C, Piccioni F, et al. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell. 2016;30:214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belinsky SA. Unmasking the lung cancer epigenome. Annu Rev Physiol. 2015;77:453–74.

    Article  CAS  PubMed  Google Scholar 

  4. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  PubMed  Google Scholar 

  5. Li E, Zhang Y. DNA methylation in mammals. CSH Perspect Biol. 2014;6:a19133.

    Google Scholar 

  6. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.

    Article  CAS  PubMed  Google Scholar 

  7. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012;21:655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhu H, Wu K, Yan W, Hu L, Yuan J, Dong Y, et al. Epigenetic silencing of DACH1 induces loss of transforming growth factor-β1 antiproliferative response in human hepatocellular carcinoma. Hepatology. 2013;58:2012–22.

    Article  CAS  PubMed  Google Scholar 

  9. Liu WB, Han F, Jiang X, Chen HQ, Zhao H, Liu Y, et al. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget. 2015;6:21225–39.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han F, Liu W, Jiang X, Shi X, Yin L, Ao L, et al. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer. Oncogene. 2015;34:4391–402.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan S, Yu Z, Liu Q, Zhang M, Xiang Y, Wu N, et al. GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/beta-catenin signaling in lung adenocarcinoma. Oncogene. 2016;35:6120–31.

    Article  CAS  PubMed  Google Scholar 

  12. Liu WB, Jiang X, Han F, Li YH, Chen HQ, Liu Y, et al. LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer. Cell Death Dis. 2013;4:e882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu WB, Han F, Du XH, Jiang X, Li YH, Liu Y, et al. Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer. 2014;134:1311–22.

    Article  CAS  PubMed  Google Scholar 

  14. Ullmer C, Schmuck K, Figge A, Lubbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett. 1998;424:63–8.

    Article  CAS  PubMed  Google Scholar 

  15. Guillaume JL, Daulat AM, Maurice P, Levoye A, Migaud M, Brydon L, et al. The PDZ protein Mupp1 promotes Gi coupling and signaling of the Mt1 melatonin receptor. J Biol Chem. 2008;283:16762–71.

    Article  CAS  PubMed  Google Scholar 

  16. Krapivinsky G, Medina I, Krapivinsky L, Gapon S, Clapham DE. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron. 2004;43:563–74.

    Article  CAS  PubMed  Google Scholar 

  17. Lanaspa MA, Almeida NE, Andres-Hernando A, Rivard CJ, Capasso JM, Berl T. The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cells. Proc Natl Acad Sci USA. 2007;104:13672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lanaspa MA, Andres-Hernando A, Rivard CJ, Dai Y, Berl T. Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Proc Natl Acad Sci USA. 2008;105:15797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coyne CB, Voelker T, Pichla SL, Bergelson JM. The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem. 2004;279:48079–84.

    Article  CAS  PubMed  Google Scholar 

  20. Martin TA, Watkins G, Mansel RE, Jiang WG. Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer. 2004;40:2717–25.

    Article  CAS  PubMed  Google Scholar 

  21. Massimi P, Gammoh N, Thomas M, Banks L. HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene. 2004;23:8033–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sheu JJC, Lee CH, Ko JY, Tsao GSW, Wu CC, Fang CY, et al. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 are genomic markers for prognosis of advanced nasopharyngeal carcinoma. Cancer Epidemiol Biomar. 2009;18:2709–16.

    Article  CAS  Google Scholar 

  23. Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T. Mammalian fat and dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol. 2009;185:959–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, et al. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell. 2013;24:603–16.

    Article  CAS  PubMed  Google Scholar 

  25. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell. 2015;28:57–69.

    Article  CAS  PubMed  Google Scholar 

  26. Liu W, Han F, Jiang X, Yin L, Chen H, Li Y, et al. Epigenetic regulation of ANKRD18B in lung cancer. Mol Carcinog. 2015;54:312–21.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, An Q, Li L, Zhang D, Huang J, Feng X, et al. Hypermethylation of p16INK4a in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis. 2003;24:1897–901.

    Article  CAS  PubMed  Google Scholar 

  28. Nawaz I, Qiu X, Wu H, Li Y, Fan Y, Hu L, et al. Development of a multiplex methylation specific PCR suitable for (early) detection of non-small cell lung cancer. Epigenetics. 2014;9:1138–48.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hubers AJ, Heideman DAM, Burgers SA, Herder GJM, Sterk PJ, Rhodius RJ, et al. DNA hypermethylation analysis in sputum for the diagnosis of lung cancer: training validation set approach. Brit J Cancer. 2015;112:1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wrangle J, Machida EO, Danilova L, Hulbert A, Franco N, Zhang W, et al. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin Cancer Res. 2014;20:1856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang J, Simonneau C, Kilker R, Oakley L, Byrne MD, Nichtova Z, et al. Murine MPDZ-linked hydrocephalus is caused by hyperpermeability of the choroid plexus. EMBO Mol Med. 2019;11:e9540.

    Article  PubMed  Google Scholar 

  32. Feldner A, Adam MG, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tetzlaff F, Adam MG, Feldner A, Moll I, Menuchin A, Rodriguez-Vita J, et al. MPDZ promotes DLL4-induced Notch signaling during angiogenesis. Elife. 2018;7:e32860.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. 2014;13:63–79.

    Article  CAS  PubMed  Google Scholar 

  35. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.

    Article  CAS  PubMed  Google Scholar 

  36. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walko G, Woodhouse S, Pisco AO, Rognoni E, Liakath-Ali K, Lichtenberger BM, et al. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun. 2017;8:14744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB, et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene. 2011;30:2810–22.

    Article  CAS  PubMed  Google Scholar 

  42. Hsu YL, Hung JY, Chou SH, Huang MS, Tsai MJ, Lin YS, et al. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene. 2015;34:4056–68.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25:51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283:5496–509.

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Ye L, Li Q, Wu X, Wang B, Ouyang Y, et al. Synaptopodin-2 suppresses metastasis of triple-negative breast cancer via inhibition of YAP/TAZ activity. J Pathol 2018;244:71–83.

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Sinnett-Smith J, Stevens JV, Young SH, Rozengurt E. Biphasic regulation of yes-associated protein (YAP) cellular localization, phosphorylation, and activity by G protein-coupled receptor agonists in intestinal epithelial cells: a novel role for protein kinase D (PKD). J Biol Chem. 2016;291:17988–8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wen X, Wan J, He Q, Wang M, Li S, Jiang M, et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer. Signal Transduct Target Ther. 2020;5:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang YL, Li Q, Yang XM, Fang F, Li J, Wang YH, et al. SPON2 promotes M1-like macrophage recruitment and inhibits hepatocellular carcinoma metastasis by distinct integrin-rho GTPase-Hippo pathways. Cancer Res. 2018;78:2305–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81573179) and the Natural Science Foundation Project of Chongqing CSTC of China (No. cstc2018jcyjAX0233). The authors sincerely thank Yajing Li for technical help.

Author information

Authors and Affiliations

Authors

Contributions

WL and YH conceived the study, carried out experiments, analyzed data, and drafted the manuscript. DW, FH, HC, JChen, and XJ carried out experiments. WL, JCao, and JL conceived and supervised the study, analyzed data, and finalized the manuscript. All authors were involved in writing the paper and had final approval of the submitted and published versions.

Corresponding authors

Correspondence to Wenbin Liu, Jia Cao or Jinyi Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Huang, Y., Wang, D. et al. MPDZ as a novel epigenetic silenced tumor suppressor inhibits growth and progression of lung cancer through the Hippo-YAP pathway. Oncogene 40, 4468–4485 (2021). https://doi.org/10.1038/s41388-021-01857-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01857-8

This article is cited by

Search

Quick links