Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma

Abstract

Pancreatic ductal adenocarcinoma (PDAC) metastasizes to distant organs, which is the primary cause of mortality; however, specific features mediating organ-specific metastasis remain unexplored. Emerging evidence demonstrates that cancer stem cells (CSCs) and cellular metabolism play a pivotal role in metastasis. Here we investigated the role of distinct subtypes of pancreatic CSCs and their metabolomic signatures in organ-specific metastatic colonization. We found that PDAC consists of ALDH+/CD133+ and drug-resistant (MDR1+) subtypes of CSCs with specific metabolic and stemness signatures. Human PDAC tissues with gemcitabine treatment, autochthonous mouse tumors from KrasG12D; Pdx1-Cre (KC) and KrasG12D; Trp53R172H; Pdx-1 Cre (KPC) mice, and KPC- Liver/Lung metastatic cells were used to evaluate the CSC, EMT (epithelial-to-mesenchymal transition), and metabolic profiles. A strong association was observed between distinct CSC subtypes and organ-specific colonization. The liver metastasis showed drug-resistant CSC- and EMT-like phenotype with aerobic glycolysis and fatty acid β-oxidation-mediated oxidative (glyco-oxidative) metabolism. On the contrary, lung metastasis displayed ALDH+/CD133+ and MET-like phenotype with oxidative metabolism. These results were obtained by evaluating FACS-based side population (SP), autofluorescence (AF+) and Alde-red assays for CSCs, and Seahorse-based oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and fatty acid β-oxidation (FAO)-mediated OCR assays for metabolic features along with specific gene signatures. Further, we developed in vitro human liver and lung PDAC metastasis models by using a combination of liver or lung decellularized scaffolds, a co-culture, and a sphere culture methods. PDAC cells grown in the liver-mimicking model showed the enrichment of MDR1+ and CPT1A+ populations, whereas the PDAC cells grown in the lung-mimicking environment showed the enrichment of ALDH+/CD133+ populations. In addition, we observed significantly elevated expression of ALDH1 in lung metastasis and MDR1/LDH-A expression in liver metastasis compared to human primary PDAC tumors. Our studies elucidate that distinct CSCs adapt unique metabolic signatures for organotropic metastasis, which will pave the way for the development of targeted therapy for PDAC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct subtypes of CSC populations in pancreatic cancer show specific stem cell features.
Fig. 2: Distinct subtypes of CSC populations show specific metabolic profiles.
Fig. 3: Liver and lung metastasis of PDAC show specific stem cell features.
Fig. 4: Liver and lung metastases of PDAC show specific metabolic features.
Fig. 5: Liver and lung metastases of PDAC show specific EMT/MET features.
Fig. 6: Organ-specific colonization potentials of distinct pancreatic CSCs.
Fig. 7: Human PDAC lung and liver metastases show specific stem cell and metabolic profiles relative to primary PDAC.

Similar content being viewed by others

References

  1. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  3. Huang P, Wang CY, Gou SM, Wu HS, Liu T, Xiong JX. Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World J Gastroenterol. 2008;14:3903–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  5. Li C, Lee CJ, Simeone DM. Identification of human pancreatic cancer stem cells. Methods Mol Biol. 2009;568:161–73.

    Article  CAS  PubMed  Google Scholar 

  6. Niess H, Camaj P, Renner A, Ischenko I, Zhao Y, Krebs S, et al. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis. Target Oncol. 2015;10:215–27.

    Article  PubMed  Google Scholar 

  7. Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, et al. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS ONE. 2011;6:e20636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, et al. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol Med. 2008;14:450–60.

    Article  CAS  PubMed  Google Scholar 

  9. Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45.

    Article  CAS  PubMed  Google Scholar 

  10. Miranda-Lorenzo I, Dorado J, Lonardo E, Alcala S, Serrano AG, Clausell-Tormos J, et al. Intracellular autofluorescence: a biomarker for epithelial cancer stem cells. Nat Methods. 2014;11:1161–9.

    Article  CAS  PubMed  Google Scholar 

  11. Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 2018;28:69–86.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22:590–605.

    Article  CAS  PubMed  Google Scholar 

  13. Menendez JA, Corominas-Faja B, Cuyàs E, Alarcón T. Metabostemness: metaboloepigenetic reprogramming of cancer stem-cell functions. Oncoscience. 2014;1:803–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front Oncol. 2014;4:262.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017;32:71–87.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, et al. Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res. 2005;11:3094–101.

    Article  CAS  PubMed  Google Scholar 

  17. Schild T, Low V, Blenis J, Gomes AP. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell. 2018;33:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lehuede C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 2016;76:5201–8.

    Article  PubMed  CAS  Google Scholar 

  19. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubin MA. Insights into the mechanism of organ-specific cancer metastasis. Cancer Discov. 2014;4:1262–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liou G-Y. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int J Biochem Cell Biol. 2019;106:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Celia-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2019;10:a036905.

  23. Bhagwandin VJ, Bishop JM, Wright WE, Shay JW. The Metastatic potential and chemoresistance of human pancreatic cancer stem cells. PLoS ONE. 2016;11:e0148807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102:340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nimmakayala RK, Seshacharyulu P, Lakshmanan I, Rachagani S, Chugh S, Karmakar S, et al. Cigarette smoke induces stem cell features of pancreatic cancer cells via PAF1. Gastroenterology. 2018;155:892–908.e6.

    Article  CAS  PubMed  Google Scholar 

  26. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69:1302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2017;66:1802–10.

    Article  CAS  PubMed  Google Scholar 

  28. Poruk KE, Blackford AL, Weiss MJ, Cameron JL, He J, Goggins M, et al. Circulating tumor cells expressing markers of tumor-initiating cells predict poor survival and cancer recurrence in patients with pancreatic ductal adenocarcinoma. Clin Cancer Res. 2017;23:2681–90.

    Article  CAS  PubMed  Google Scholar 

  29. Ramamoorthy P, Thomas SM, Kaushik G, Subramaniam D, Chastain KM, Dhar A, et al. Metastatic tumor-in-a-dish, a novel multicellular organoid to study lung colonization and predict therapeutic response. Cancer Res. 2019;79:1681–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duong HQ, You KS, Oh S, Kwak SJ, Seong YS. Silencing of NRF2 reduces the expression of ALDH1A1 and ALDH3A1 and sensitizes to 5-FU in pancreatic cancer cells. Antioxidants (Basel). 2017;6:52.

  31. Nimmakayala RK, Batra SK, Ponnusamy MP. Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer. 2019;1871:50–63.

    Article  CAS  PubMed  Google Scholar 

  32. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin Y-H, Wu M-H, Huang Y-H, Yeh C-T, Cheng M-L, Chi H-C, et al. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 2018;67:188–203.

    Article  CAS  PubMed  Google Scholar 

  35. Jiao L, Zhang H-L, Li D-D, Yang K-L, Tang J, Li X, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy. 2018;14:671–84.

    Article  CAS  PubMed  Google Scholar 

  36. Richard V, Nair MG, Santhosh Kumar TR, Pillai MR. Side population cells as prototype of chemoresistant, tumor-initiating cells. J BioMed Res Int. 2013;2013:8.

    Google Scholar 

  37. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5:e1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Y, Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem. 2011;286:32843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS ONE. 2014;9:e84941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. De Luca A, Fiorillo M, Peiris-Pages M, Ozsvari B, Smith DL, Sanchez-Alvarez R, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 2015;6:14777–95.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lamb R, Bonuccelli G, Ozsvari B, Peiris-Pages M, Fiorillo M, Smith DL, et al. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: understanding WNT/FGF-driven anabolic signaling. Oncotarget. 2015;6:30453–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pasto A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget. 2014;5:4305–19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Han S, Wei R, Zhang X, Jiang N, Fan M, Huang JH, et al. CPT1A/2-mediated FAO enhancement—a metabolic target in radioresistant breast cancer. Front Oncol. 2019;9:1201.

  44. Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27:136–50.e5.

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, Li G, Zhang P, Zhuang X, Hu G. A CD44v(+) subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis. 2017;8:e2679–e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z, et al. Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology. 2013;145:636–46.e5.

    Article  CAS  PubMed  Google Scholar 

  47. Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology. 2006;130:1245–58.

    Article  CAS  PubMed  Google Scholar 

  48. Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Craig Semerad, Victoria B. Smith, and Samantha Wall of the Flow Cytometry Research Facility, University of Nebraska Medical Center, for assisting with flow cytometry. We thank Janice A. Taylor and James R. Talaska of the Advanced Microscopy Core Facility at the University of Nebraska Medical Center for assisting with confocal microscopy. Further, we thank Dr. Kelly Stauch, Seahorse Core director at the University of Nebraska Medical Center, for assisting with Seahorse experiments. We were supported primarily by the following grants from the National Institutes of Health P01 CA217798, R01 CA210637, R01 CA183459, R01 CA195586, R01 CA201444, R01 CA228524, U01 CA200466, R01 CA228524, R01 CA247471, R50CA211462, P50CA12729 and U01 CA210240, and the Nebraska Department of Health and Human Services LB595.

Author information

Authors and Affiliations

Authors

Contributions

MPP, SKB, and RKN conceived and designed the experiments. RKN performed the experiments. FL, SR, PN, GSK, SC, and RG assisted with in vitro experiments. SR and SM assisted with in vivo experiments. YSC assisted and performed mass spectrometry experiments. MPP, SKB, RKN, DJM, MAH, SML, and PDR analyzed the data. PMG and MAH collected and provided human specimens. RKN and MPP wrote the manuscript.

Corresponding authors

Correspondence to Surinder K. Batra or Moorthy P. Ponnusamy.

Ethics declarations

Conflict of interest

SKB is one of the co-founders of Sanguine Diagnostics and Therapeutics, Inc. The other authors disclosed no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmakayala, R.K., Leon, F., Rachagani, S. et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 40, 215–231 (2021). https://doi.org/10.1038/s41388-020-01518-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01518-2

This article is cited by

Search

Quick links