Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand

Abstract

Exposure therapy based on the extinction of fear memory is first-line treatment for post-traumatic stress disorder (PTSD). However, fear extinction is relatively easy to learn but difficult to remember, extinguished fear often relapses under a number of circumstances. Here, we report that extinction learning-induced association of neuronal nitric oxide synthase (nNOS) with its carboxy-terminal PDZ ligand (CAPON) in the infralimbic (IL) subregion of medial prefrontal cortex negatively regulates extinction memory and dissociating nNOS-CAPON can prevent the return of extinguished fear in mice. Extinction training significantly increases nNOS-CAPON association in the IL. Disruptors of nNOS-CAPON increase extracellular signal-regulated kinase (ERK) phosphorylation and facilitate the retention of extinction memory in an ERK2-dependent manner. More importantly, dissociating nNOS-CAPON after extinction training enhances long-term potentiation and excitatory synaptic transmission, increases spine density in the IL, and prevents spontaneous recovery, renewal and reinstatement of remote fear of mice. Moreover, nNOS-CAPON disruptors do not affect other types of learning. Thus, nNOS-CAPON can serve as a new target for treating PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extinction learning-induced nNOS-CAPON association in the IL negatively regulates extinction memory.
Fig. 2: nNOS-CAPON association weakens extinction memory through inhibiting ERK2 but not ERK1.
Fig. 3: Dissociating CAPON from nNOS enhances synaptic plasticity in the IL.
Fig. 4: Dissociating CAPON from nNOS prevents spontaneous recovery of remote fear.
Fig. 5: Dissociating CAPON from nNOS reduces renewal and reinstatement of remote fear.

Similar content being viewed by others

References

  1. Bryant RA. Post-traumatic stress disorder: a state-of-the-art review of evidence and challenges. World Psychiatry. 2019;18:259–69.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Myers KM, Carlezon WA Jr, Davis M. Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology. 2011;36:274–93.

    Article  CAS  PubMed  Google Scholar 

  3. Mataix-Cols D, Fernández de la Cruz L, Monzani B, Rosenfield D, Andersson E, Pérez-Vigil A, et al. D-Cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data. JAMA Psychiatry. 2017;74:501–10.

    Article  PubMed  Google Scholar 

  4. Vervliet B, Craske MG, Hermans D. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol. 2013;9:215–48.

    Article  PubMed  Google Scholar 

  5. Goode TD, Maren S. Animal models of fear relapse. ILAR J. 2014;55:246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Monfils MH, Cowansage KK, Klann E, LeDoux JE. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science. 2009;324:951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature. 2010;463:49–53.

    Article  CAS  PubMed  Google Scholar 

  8. Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C. Postretrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology. 2013;226:631–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zuccolo PF, Hunziker MHL. A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behav Process. 2019;162:39–54.

    Article  Google Scholar 

  10. Kindt M, Soeter M. Reconsolidation in a human fear conditioning study: a test of extinction as updating mechanism. Biol Psychol. 2013;92:43–50.

    Article  PubMed  Google Scholar 

  11. Elsey JW, Van Ast VA, Kindt M. Human memory reconsolidation: a guiding framework and critical review of the evidence. Psychol Bull. 2018;144:797–848.

    Article  PubMed  Google Scholar 

  12. Luyten L, Bechers T. A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats. Neurobiol Learn Mem. 2017;144:208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fitzgerald PJ, Seemann JR, Maren S. Can fear extinction be enhanced? A review of pharmacological and behavioral findings. Brain Res Bull. 2014;105:46–60.

    Article  CAS  PubMed  Google Scholar 

  14. Gräff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J, et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014;156:261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laurent V, Westbrook RF. Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn Mem. 2009;16:520–9.

    Article  PubMed  Google Scholar 

  16. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ. Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci. 2006;26:9503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53:871–80.

    Article  CAS  PubMed  Google Scholar 

  20. Matsuda S, Matsuzawa D, Nakazawa K, Sutoh C, Ohtsuka H, Ishii D, et al. d-serine enhances extinction of auditory cued fear conditioning via ERK1/2 phosphorylation in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:895–902.

    Article  CAS  PubMed  Google Scholar 

  21. Cestari V, Rossi-Arnaud C, Saraulli D, Costanzi M. The MAP(K) of fear: from memory consolidation to memory extinction. Brain Res Bull. 2014;105:8–16.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu LJ, Li TY, Luo CX, Jiang N, Chang L, Lin YH, et al. CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nat Med. 2014;20:1050–4.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Zhu Z, Liang HY, Zhang L, Zhou QG, Ni HY, et al. nNOS-CAPON interaction mediates amyloid-β-induced neurotoxicity, especially in the early stages. Aging Cell. 2018;17:e12754.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho JH, Deisseroth K, Bolshakov VY. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron. 2013;80:1491–507.

    Article  CAS  PubMed  Google Scholar 

  26. Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron. 1998;20:115–24.

    Article  CAS  PubMed  Google Scholar 

  27. Marek R, Coelho CM, Sullivan RK, Baker-Andresen D, Li X, Ratnu V, et al. Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J Ne urosci. 2011;31:7486–91.

    CAS  Google Scholar 

  28. Xiong GJ, Yang Y, Wang LP, Xu L, Mao RR. Maternal separation exaggerates spontaneous recovery of extinguished contextual fear in adult female rats. Behav Brain Res. 2014;269:75–80.

    Article  PubMed  Google Scholar 

  29. Bentefour Y, Bennis M, Garcia R, Ba-M’hamed S. High-frequency stimulation of the infralimbic cortex, following behavioral suppression of PTSD-like symptoms, prevents symptom relapse in mice. Brain Stimul. 2018;11:913–20.

    Article  PubMed  Google Scholar 

  30. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling dendritic spine substructures during long-term potentiation. Neuron. 2014;82:444–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Futter M, Uematsu K, Bullock SA, Kim Y, Hemmings HC Jr, Nishi A, et al. Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5). Proc Natl Acad Sci USA. 2005;102:3489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai CS, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012;483:87–91.

    Article  CAS  PubMed  Google Scholar 

  33. Moyer CE, Zuo Y. Cortical dendritic spine development and plasticity: insights from in vivo imaging. Curr Opin Neurobiol. 2018;53:76–82.

    Article  CAS  PubMed  Google Scholar 

  34. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharm Ther. 2015;149:150–90.

    Article  CAS  Google Scholar 

  35. Hardingham G. NMDA receptor C-terminal signaling in development, plasticity, and disease. F1000Res. 2019;8:F1000. Faculty Rev-1547.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benarroch EE. NMDA receptors: recent insights and clinical correlations. Neurology. 2011;76:1750–7.

    Article  PubMed  Google Scholar 

  37. Karpova A, Mikhaylova M, Bera S, Bär J, Reddy PP, Behnisch T, et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 2013;152:1119–33.

    Article  CAS  PubMed  Google Scholar 

  38. Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, et al. ERK2 contributes to the control of social behaviors in mice. J Neurosci. 2011;31:11953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hugues S, Deschaux O, Garcia R. Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. Learn Mem. 2004;11:540–3.

    Article  PubMed  Google Scholar 

  40. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20:223–30.

    Article  CAS  PubMed  Google Scholar 

  41. Ni HY, Song YX, Lin YH, Cao B, Wang DL, Zhang Y, et al. Dissociating nNOS (neuronal NO synthase)-CAPON (carboxy-terminal postsynaptic density-95/discs large/zona occludens-1 ligand of nNOS) interaction promotes functional recovery after stroke via enhanced structural neuroplasticity. Stroke. 2019;50:728–37.

    Article  CAS  PubMed  Google Scholar 

  42. Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12:3997–4003.

    Article  CAS  PubMed  Google Scholar 

  43. Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone Deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Awad W, Ferreira G, Maroun M. Dissociation of the role of infralimbic cortex in learning and consolidation of extinction of recent and remote aversion memory. Neuropsychopharmacology. 2015;40:2566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, et al. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:161–93.

    Article  CAS  PubMed  Google Scholar 

  46. Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, et al. Transient and persistent deneritic spines in the neocortex in vivo. Neuron. 2005;45:279–91.

    Article  CAS  PubMed  Google Scholar 

  47. Segal M. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Eur J Neurosci. 2010;31:2178–84.

    Article  PubMed  Google Scholar 

  48. Nakahata Y, Yasuda R. Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization. Front Synaptic Neurosci. 2018;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, et al. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci. 2018;21:384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin C, Bian XL, Wu HY, Xian JY, Cai CY, Lin YH, et al. Dorsal hippocampus to infralimbic cortex circuit is essential for the recall of extinction memory. Cereb Cortex. 2020;31:1707–18.

    Article  Google Scholar 

  51. Lisman J, Cooper K, Sehgal M, Silva AJ. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci. 2018;21:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barker GR, Wong LF, Uney JB, Warburton EC. CREB transcription in the medial prefrontal cortex regulates the formation of long-term associative recognition memory. Learn Mem. 2020;27:45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LRM, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron. 2007;53:261–77.

    Article  CAS  PubMed  Google Scholar 

  54. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  55. Singh S, Siddiqui SA, Tripathy S, Kumar S, Saha S, Ugale R, et al. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res Bull. 2018;140:355–64.

    Article  PubMed  Google Scholar 

  56. Dunsmoor JE, Niv Y, Daw N, Phelps EA. Rethinking extinction. Neuron. 2015;88:47–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang WS, Kang S, Liu WT, Li M, Liu Y, Yu C, et al. Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex. J Neurosci. 2012;32:13763–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Comput Biol. 2010;6:e1000675.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peng HM, Morishima Y, Pratt WB, Osawa Y. Modulation of heme/substrate binding cleft of neuronal nitric-oxide synthase (nNOS) regulates binding of Hsp90 and Hsp70 proteins and nNOS ubiquitination. J Biol Chem. 2012;287:1556–65.

    Article  CAS  PubMed  Google Scholar 

  60. Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res. 2017;95:836–52.

    Article  CAS  PubMed  Google Scholar 

  61. Domingos LB, Hott SC, Terzian ALB, Resstel LBM. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology. 2018;128:474–81.

    Article  CAS  PubMed  Google Scholar 

  62. Jaffrey SR, Benfenati F, Snowman AM, Czernik AJ, Snyder SH. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc Natl Acad Sci USA. 2002;99:3199–31204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee WH, Carey LM, Li LL, Xu Z, Lai YY, Courtney MJ, et al. ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability. Mol Pain. 2018;14:1744806918801224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hankey GJ. Nerinetide before reperfusion in acute ischaemic stroke: déjà vu or new insights? Lancet. 2020;395:843–4.

    Article  PubMed  Google Scholar 

  65. Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM. Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci. 2017;20:52–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (31530091, 81870912), National Key Research and Development Program of China (2016YFC1306703), Science and Technology Program of Guangdong (2018B030334001) and by the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Author information

Authors and Affiliations

Authors

Contributions

D-YZ designed experiments; CQ, XLB, HYW, JYX, YHL, CYC, YZ and XLK performed research; LC and CXL contributed unpublished reagents/analytic tools; TYL provided a small molecular nNOS-CAPON disruptor ZLc-002; CQ and XLB analyzed data; D-YZ wrote the paper. D-YZ supervised the research.

Corresponding author

Correspondence to Dong-Ya Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, C., Bian, XL., Wu, HY. et al. Prevention of the return of extinguished fear by disrupting the interaction of neuronal nitric oxide synthase with its carboxy-terminal PDZ ligand. Mol Psychiatry 26, 6506–6519 (2021). https://doi.org/10.1038/s41380-021-01118-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01118-w

This article is cited by

Search

Quick links