Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA

Abstract

An emerging preclinical literature suggests that targeting central glucagon-like peptide-1 receptors (GLP-1Rs) may represent a novel approach to treating cocaine use disorder. However, the exact neural circuits and cell types that mediate the suppressive effects of GLP-1R agonists on cocaine-seeking behavior are largely unknown. The laterodorsal tegmental nucleus (LDTg) expresses GLP-1Rs and functions as a neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the primary source of central GLP-1, with midbrain and forebrain nuclei known to regulate cocaine-seeking behavior. The goal of this study was to characterize the role of LDTg GLP-1R-expressing neurons and their projections to the ventral tegmental area (VTA) in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we showed that administration of the GLP-1R agonist exendin-4 (Ex-4) directly into the LDTg significantly attenuated cocaine seeking at a dose that did not affect sucrose seeking, ad libitum food intake, or body weight. In addition, our studies revealed that selectively activating NTS-to-LDTg circuits attenuated cocaine seeking via a GLP-1R-dependent mechanism. We also demonstrated, for the first time, that GLP-1Rs are expressed primarily on GABAergic neurons in the LDTg and that the efficacy of Ex-4 to reduce cocaine seeking depends, in part, on activation of LDTg-to-VTA GABAergic projections. Taken together, these studies identify a central mechanism by which Ex-4 attenuates cocaine seeking and highlight GABAergic GLP-1R-expressing circuits in the midbrain as important anti-craving pathways in regulating cocaine craving-induced relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intra-LDTg Ex-4 attenuates cocaine seeking at a dose that does not affect sucrose seeking, food intake, or body weight.
Fig. 2: Activation of NTS-to-LDTg circuits is sufficient to attenuate cocaine seeking.
Fig. 3: GLP-1Rs are expressed primarily on GABA neurons in the LDTg.
Fig. 4: Reduced GLP-1R expression in LDTg GABA neurons augments cocaine taking and prevents the ability of Ex-4 to reduce cocaine seeking.
Fig. 5: LDTg-to-VTA GABA circuits regulate cocaine seeking and mediate the efficacy of Ex-4 on drug-seeking behavior.

Similar content being viewed by others

References

  1. NSDUH. Results from the 2017 National Survey on Drug Use and Health. vol. NSDUH Series H-53. Substance Abuse and Mental Health Services Administration; Rockville, MD; 2018.

  2. Hughes A, Williams MR, Lipari RN, Van Horn S. State estimates of past year cocaine use among young adults: 2014 and 2015. Report TC. Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration; 2016.

  3. Pierce RC, O’Brien CP, Kenny PJ, Vanderschuren LJ. Rational development of addiction pharmacotherapies: successes, failures, and prospects. Cold Spring Harb Perspect Med. 2012;2:a012880.

    PubMed  Google Scholar 

  4. Graham DL, Erreger K, Galli A, Stanwood GD. GLP-1 analog attenuates cocaine reward. Mol Psychiatry. 2013;18:961–2.

    CAS  PubMed  Google Scholar 

  5. Sorensen G, Reddy IA, Weikop P, Graham DL, Stanwood GD, Wortwein G, et al. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol Behav. 2015;149:262–8.

    PubMed  PubMed Central  Google Scholar 

  6. Egecioglu E, Engel JA, Jerlhag E. The glucagon-like peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLoS ONE. 2013;8:e69010.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Harasta AE, Power JM, von Jonquieres G, Karl T, Drucker DJ, Housley GD, et al. Septal Glucagon-Like peptide 1 receptor expression determines suppression of cocaine-induced behavior. Neuropsychopharmacology. 2015;40:1969–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez NS, O’Donovan B, Ortinski PI, Schmidt HD. Activation of glucagon-like peptide-1 receptors in the nucleus accumbens attenuates cocaine seeking in rats. Addict Biol. 2019;24:170–81.

    CAS  PubMed  Google Scholar 

  9. Hernandez NS, Ige KY, Mietlicki-Baase EG, Molina-Castro GC, Turner CA, Hayes MR, et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area attenuates cocaine seeking in rats. Neuropsychopharmacology. 2018;43:2000–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, et al. Glucagon-like peptide-1 receptor activation in the ventral tegmental area decreases the reinforcing efficacy of cocaine. Neuropsychopharmacology. 2016;41:1917–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy IA, Pino JA, Weikop P, Osses N, Sorensen G, Bering T, et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry. 2016;6:e809.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5:262–9.

    CAS  PubMed  Google Scholar 

  13. Shukla AP, Buniak WI, Aronne LJ. Treatment of obesity in 2015. J Cardiopulm Rehabil Prev. 2015;35:81–92.

    PubMed  Google Scholar 

  14. Hernandez NS, Schmidt HD. Central GLP-1 receptors: novel molecular targets for cocaine use disorder. Physiol Behav. 2019;206:93–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cornwall J, Cooper JD, Phillipson OT. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull. 1990;25:271–84.

    CAS  PubMed  Google Scholar 

  16. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci. 1995;15:5859–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Omelchenko N, Sesack SR. Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J Comp Neurol. 2005;483:217–35.

    PubMed  Google Scholar 

  18. Lodge DJ, Grace AA. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci U S A. 2006;103:5167–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten IB, et al. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci. 2016;19:1025–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Forster GL, Blaha CD. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci. 2000;12:3596–604.

    CAS  PubMed  Google Scholar 

  21. Blaha CD, Allen LF, Das S, Inglis WL, Latimer MP, Vincent SR, et al. Modulation of dopamine efflux in the nucleus accumbens after cholinergic stimulation of the ventral tegmental area in intact, pedunculopontine tegmental nucleus-lesioned, and laterodorsal tegmental nucleus-lesioned rats. J Neurosci. 1996;16:714–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang HL, Morales M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci. 2009;29:340–58.

    PubMed  Google Scholar 

  23. Luquin E, Huerta I, Aymerich MS, Mengual E. Stereological estimates of glutamatergic, GABAergic, and cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Front Neuroanat. 2018;12:34.

    PubMed  PubMed Central  Google Scholar 

  24. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Steidl S, Wang H, Ordonez M, Zhang S, Morales M. Optogenetic excitation in the ventral tegmental area of glutamatergic or cholinergic inputs from the laterodorsal tegmental area drives reward. Eur J Neurosci. 2017;45:559–71.

    PubMed  Google Scholar 

  26. Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, et al. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron. 2016;90:333–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Steidl S, Veverka K. Optogenetic excitation of LDTg axons in the VTA reinforces operant responding in rats. Brain Res. 2015;1614:86–93.

    CAS  PubMed  Google Scholar 

  28. Shinohara F, Kihara Y, Ide S, Minami M, Kaneda K. Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference. Neuropharmacology. 2014;79:573–9.

    CAS  PubMed  Google Scholar 

  29. Steidl S, Cardiff KM, Wise RA. Increased latencies to initiate cocaine self-administration following laterodorsal tegmental nucleus lesions. Behav Brain Res. 2015;287:82–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt HD, Famous KR, Pierce RC. The limbic circuitry underlying cocaine seeking encompasses the PPTg/LDT. Eur J Neurosci. 2009;30:1358–69.

    PubMed  PubMed Central  Google Scholar 

  31. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403:261–80.

    CAS  PubMed  Google Scholar 

  32. Goke R, Larsen PJ, Mikkelsen JD, Sheikh SP. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci. 1995;7:2294–300.

    CAS  PubMed  Google Scholar 

  33. Reiner DJ, Leon RM, McGrath LE, Koch-Laskowski K, Hahn JD, Kanoski SE, et al. Glucagon-like peptide-1 receptor signaling in the lateral dorsal tegmental nucleus regulates energy balance. Neuropsychopharmacology. 2018;43:627–37.

    CAS  PubMed  Google Scholar 

  34. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012;16:296–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zahm DS, Becker ML, Freiman AJ, Strauch S, Degarmo B, Geisler S, et al. Fos after single and repeated self-administration of cocaine and saline in the rat: emphasis on the Basal forebrain and recalibration of expression. Neuropsychopharmacology. 2010;35:445–63.

    CAS  PubMed  Google Scholar 

  37. Buffalari DM, Rinaman L. Cocaine self-administration and extinction alter medullary noradrenergic and limbic forebrain cFos responses to acute, noncontingent cocaine injections in adult rats. Neuroscience. 2014;281C:241–50.

    Google Scholar 

  38. Alhadeff AL, Mergler BD, Zimmer DJ, Turner CA, Reiner DJ, Schmidt HD, et al. Endogenous Glucagon-like peptide-1 receptor signaling in the nucleus tractus solitarius is required for food intake control. Neuropsychopharmacology. 2017;42:1471–9.

    CAS  PubMed  Google Scholar 

  39. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840.

    PubMed  PubMed Central  Google Scholar 

  40. Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim BK, et al. Enhanced AMPA receptor trafficking mediates the anorexigenic effect of endogenous Glucagon-like peptide-1 in the paraventricular hypothalamus. Neuron. 2017;96:897–909.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaykema RP, Newmyer BA, Ottolini M, Raje V, Warthen DM, Lambeth PS, et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J Clin Invest. 2017;127:1031–45.

    PubMed  PubMed Central  Google Scholar 

  42. Holt MK, Richards JE, Cook DR, Brierley DI, Williams DL, Reimann F, et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes. 2019;68:21–33.

    CAS  PubMed  Google Scholar 

  43. Shi X, Chacko S, Li F, Li D, Burrin D, Chan L, et al. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity. Mol Metab. 2017;6:1350–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng H, Stornetta RL, Agassandian K, Rinaman L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct. 2015;220:3011–22.

    CAS  PubMed  Google Scholar 

  45. Satoh K, Fibiger HC. Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol. 1986;253:277–302.

    CAS  PubMed  Google Scholar 

  46. Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290:213–42.

    CAS  PubMed  Google Scholar 

  47. Shabani S, Foster R, Gubner N, Phillips TJ, Mark GP. Muscarinic type 2 receptors in the lateral dorsal tegmental area modulate cocaine and food seeking behavior in rats. Neuroscience. 2010;170:559–69.

    CAS  PubMed  Google Scholar 

  48. Hayes MR, Kanoski SE, Alhadeff AL, Grill HJ. Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. Obesity. 2011;19:1342–9.

    CAS  PubMed  Google Scholar 

  49. Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology. 2012;62:1916–27.

    CAS  PubMed  Google Scholar 

  50. Zhang Y, Kahng MW, Elkind JA, Weir VR, Hernandez NS, Stein LM, et al. Activation of GLP-1 receptors attenuates oxycodone taking and seeking without compromising the antinociceptive effects of oxycodone in rats. Neuropsychopharmacology. 2020;45:451–61.

    CAS  PubMed  Google Scholar 

  51. Mietlicki-Baase EG, Ortinski PI, Reiner DJ, Sinon CG, McCutcheon JE, Pierce RC, et al. Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. J Neurosci. 2014;34:6985–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Richard JE, Anderberg RH, Lopez-Ferreras L, Olandersson K, Skibicka KP. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Biol Sex Differ. 2016;7:6.

    PubMed  PubMed Central  Google Scholar 

  53. Schmidt HD, McFarland KN, Darnell SB, Huizenga MN, Sangrey GR, Cha JH, et al. ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol Psychiatry. 2015;20:1460–6.

    CAS  PubMed  Google Scholar 

  54. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153:647–58.

    CAS  PubMed  Google Scholar 

  55. Mena-Segovia J, Winn P, Bolam JP. Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev. 2008;58:265–71.

    CAS  PubMed  Google Scholar 

  56. Holmstrand EC, Sesack SR. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Brain Struct Funct. 2011;216:331–45.

    PubMed  PubMed Central  Google Scholar 

  57. Kaneda K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur J Neurosci. 2019;50:2239–46.

  58. Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, Sousa GL, et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J Neurosci. 2016;36:3531–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci. 2010;1187:35–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Coimbra B, Soares-Cunha C, Borges S, Vasconcelos NA, Sousa N, Rodrigues AJ. Impairments in laterodorsal tegmentum to VTA projections underlie glucocorticoid-triggered reward deficits. Elife. 2017;6:e25843. https://doi.org/10.7554/eLife.25843.

  61. Fortin SM, Roitman MF. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiol Behav. 2017;176:17–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Coimbra B, Soares-Cunha C, Vasconcelos NAP, Domingues AV, Borges S, Sousa N, et al. Role of laterodorsal tegmentum projections to nucleus accumbens in reward-related behaviors. Nat Commun. 2019;10:4138.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christopher Turner, Rinzin Lhamo, Dr Lauren Stein, Michelle Kahng, Amanda Moreno, Suditi Rahematpura, and Kamryn Stecyk for their technical contributions to this project.

Funding

This work was supported by the following grants from the National Institutes of Health (NIH): R01 DA037897 and DA045792 (HDS). NSH is a Howard Hughes Medical Institute Gilliam Fellow. HDS and VRW were partially supported by a Mary L. And Matthew S. Santirocco College Alumni Society Undergraduate Research Grant and a Pincus-Magaziner Family Undergraduate Research Grant from the Center for Undergraduate Research & Fellowships (CURF) at the University of Pennsylvania. RM was supported by a fellowship from the Biological Basis of Behavior Program at the University of Pennsylvania. YZ was supported by the Jeane B. Kempner postdoctoral fellowship from the University of Texas Medical Branch. MTR was supported by a NIH training grant (DA028874). RCP was supported by the following NIH grants: DA33641, DA46760, and DA47555. HDS receives funding from Novo Nordisk that was not used to support these studies.

Author information

Authors and Affiliations

Authors

Contributions

NSH contributed to the acquisition and analyses of the data as well as drafted the manuscript. VRW, KR, RM, YZ, KM, and MR contributed to data collection. HDS was responsible for the study concept and design, supervised the acquisition of the data, and helped draft the manuscript. All authors reviewed content and approved the final version for publication.

Corresponding author

Correspondence to Heath D. Schmidt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, N.S., Weir, V.R., Ragnini, K. et al. GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA. Mol Psychiatry 26, 4394–4408 (2021). https://doi.org/10.1038/s41380-020-00957-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00957-3

This article is cited by

Search

Quick links