Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth

Abstract

Dietary restriction (DR) delays the incidence and decreases the growth of various types of tumors; however, the mechanisms responsible for DR-mediated antitumor effects have not been unequivocally identified. Here, we report that DR suppresses xenograft tumor growth by upregulating a novel signaling pathway. DR led to upregulated aldolase A (ALDOA) expression in xenograft tumors. ALDOA physically interacted with the catalytic subunit of DNA-dependent protein kinase (DNA-PK) and promoted DNA-PK activation. Activated DNA-PK phosphorylated p53 and increased its activity. Although ALDOA can function as an oncogene in cultured cells, it can also activate the tumor suppressor p53. Thus, ALDOA overexpression in the presence of p53 suppressed xenograft tumor growth; however, when p53 was suppressed, ALDOA overexpression promoted xenograft tumor growth. Moreover, we demonstrated that p53 suppression inhibited the antitumor effects of DR. Our results indicate that upregulation of the ALDOA/DNA-PK/p53 pathway is a mechanism accounting for the antitumor effects of DR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Fontana L, Partridge L . Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161: 106–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Longo VD, Mattson MP . Fasting: molecular mechanisms and clinical applications. Cell Metab 2014; 19: 181–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moreschi C . Beziehungen zwischen ernährung und tumorwachstum. Z Immunitätsforsch Orig 1909; 2: 651–675.

    Google Scholar 

  4. Rous P . The influence of diet on transplanted and spontaneous mouse tumors. J Exp Med 1914; 20: 433–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tannenbaum A, Silverstone H . Effect of limited food intake on survival of mice bearing spontaneous mammary carcinoma and on the incidence of lung metastases. Cancer Res 1953; 13: 532–536.

    CAS  PubMed  Google Scholar 

  6. Weindruch R, Walford RL . Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 1982; 215: 1415–1418.

    Article  CAS  PubMed  Google Scholar 

  7. Meynet O, Ricci JE . Caloric restriction and cancer: molecular mechanisms and clinical implications. Trends Mol Med 2014; 20: 419–427.

    Article  CAS  PubMed  Google Scholar 

  8. Curry NL, Mino-Kenudson M, Oliver TG, Yilmaz OH, Yilmaz VO, Moon JY et al. Pten-null tumors cohabiting the same lung display differential AKT activation and sensitivity to dietary restriction. Cancer Discov 2013; 3: 908–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kalaany NY, Sabatini DM . Tumours with PI3K activation are resistant to dietary restriction. Nature 2009; 458: 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee C, Longo VD . Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 2011; 30: 3305–3316.

    Article  CAS  PubMed  Google Scholar 

  11. Anzo M, Cobb LJ, Hwang DL, Mehta H, Said JW, Yakar S et al. Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression. Cancer Res 2008; 68: 3342–3349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Penhoet E, Rajkumar T, Rutter WJ . Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proc Natl Acad Sci USA 1966; 56: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sibley JA, Fleisher GA, Higgins GM . Significance of the level of serum aldolase in tumor-bearing animals. Cancer Res 1955; 15: 306–314.

    CAS  PubMed  Google Scholar 

  14. Schapira F, Dreyfus JC, Schapira G . Fetal-like patterns of lactic-dehydrogenase and aldolase isozymes in some pathological conditions. Enzymol Biol Clin (Basel) 1966; 7: 98–108.

    Article  CAS  Google Scholar 

  15. Lincet H, Icard P . How do glycolytic enzymes favour cancer cell proliferation by nonmetabolic functions? Oncogene 2015; 34: 3751–3759.

    Article  CAS  PubMed  Google Scholar 

  16. Lessa RC, Campos AH, Freitas CE, Silva FR, Kowalski LP, Carvalho AL et al. Identification of upregulated genes in oral squamous cell carcinomas. Head Neck 2013; 35: 1475–1481.

    PubMed  Google Scholar 

  17. Du S, Guan Z, Hao L, Song Y, Wang L, Gong L et al. Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PLoS One 2014; 9: e85804.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spindler SR . Calorie restriction enhances the expression of key metabolic enzymes associated with protein renewal during aging. Ann NY Acad Sci 2001; 928: 296–304.

    Article  CAS  PubMed  Google Scholar 

  19. Pogson CI, Denton RM . Effect of alloxan diabetes, starvation and refeeding on glycolytic kinase activities in rat epididymal adipose tissue. Nature 1967; 216: 156–157.

    Article  CAS  PubMed  Google Scholar 

  20. Hakvoort TB, Moerland PD, Frijters R, Sokolovic A, Labruyere WT, Vermeulen JL et al. Interorgan coordination of the murine adaptive response to fasting. J Biol Chem 2011; 286: 16332–16343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ritterson Lew C, Tolan DR . Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J Biol Chem 2012; 287: 42554–42563.

    Article  CAS  PubMed  Google Scholar 

  22. Caspi M, Perry G, Skalka N, Meisel S, Firsow A, Amit M et al. Aldolase positively regulates of the canonical Wnt signaling pathway. Mol Cancer 2014; 13: 164.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 1995; 82: 849–856.

    Article  CAS  PubMed  Google Scholar 

  24. Goodwin JF, Knudsen KE . Beyond DNA repair: DNA-PK function in cancer. Cancer Discov 2014; 4: 1126–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shieh SY, Ikeda M, Taya Y, Prives C . DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997; 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  26. Kim K, Jeong KW, Kim H, Choi J, Lu W, Stallcup MR et al. Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene 2012; 31: 4290–4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005; 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  28. Kao AW, Noda Y, Johnson JH, Pessin JE, Saltiel AR . Aldolase mediates the association of F-actin with the insulin-responsive glucose transporter GLUT4. J Biol Chem 1999; 274: 17742–17747.

    Article  CAS  PubMed  Google Scholar 

  29. Buscaglia CA, Penesetti D, Tao M, Nussenzweig V . Characterization of an aldolase-binding site in the Wiskott-Aldrich syndrome protein. J Biol Chem 2006; 281: 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JH, Lee S, Lee TG, Hirata M, Suh PG, Ryu SH . Phospholipase D2 directly interacts with aldolase via its PH domain. Biochemistry 2002; 41: 3414–3421.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang PY, Li G, Deng ZJ, Liu LY, Chen L, Tang JZ et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. Nucleic Acids Res 2016; 44: 3629–3642.

    Article  CAS  PubMed  Google Scholar 

  32. Concepcion J, Witte K, Wartchow C, Choo S, Yao D, Persson H et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb Chem High Throughput Screen 2009; 12: 791–800.

    Article  CAS  PubMed  Google Scholar 

  33. Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA et al. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 2003; 23: 5836–5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu J, Wu G, Lv L, Ren YF, Zhang XJ, Xue YF et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis 2012; 33: 519–528.

    Article  CAS  PubMed  Google Scholar 

  35. Tang KF, Ren H, Cao J, Zeng GL, Xie J, Chen M et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. J Cell Biol 2008; 182: 233–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu J, Sun Y, Zhang PY, Qian M, Zhang H, Chen X et al. The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis 2016; 7: e2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bin Tan (Chongqing Medical University, Chongqing, China), as well as Guiling Li, Tongke Chen and Yixiang Han (Wenzhou Medical University, Wenzhou, China), for providing technical assistance. This work was supported by the National Natural Science Foundation of China (Grant No. 81572780) and the Zhejiang Provincial Natural Sciences Foundation (Grant No. LZ16H160004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-F Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Chen, X., Zhang, PY. et al. Upregulation of the ALDOA/DNA-PK/p53 pathway by dietary restriction suppresses tumor growth. Oncogene 37, 1041–1048 (2018). https://doi.org/10.1038/onc.2017.398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.398

This article is cited by

Search

Quick links