Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

p53, a translational regulator: contribution to its tumour-suppressor activity

Abstract

A growing body of evidences indicate that deregulation of translation contributes to tumourigenesis. In tumours, alterations of translational control of specific mRNAs encoding oncogenes or tumour suppressors have been extensively reported. Moreover, restricting the rate of protein synthesis has been shown to delays tumourigenesis in C-Myc overexpressing or PTEN deleted mice models. Finally, the specific inhibition of RNA polymerase I (RNA pol I) has been shown to kill cancer cells without affecting normal cells. It thus emerges that a tight coordination between the rate of global protein synthesis and a defined translational program is required to prevent tumour development. In this review, we expose the evidences supporting that p53 acts as a translational regulator. In addition, this review discusses the notion that the ability to maintain both a selective translational program and a low level of protein synthesis could directly contribute to the p53 tumour-suppressor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    Article  CAS  PubMed  Google Scholar 

  2. Ruggero D . Translational control in cancer etiology. Cold Spring Harbor Perspect Biol 2013; 5: a012336–a012336.

    Article  CAS  Google Scholar 

  3. Jackson RJ, Hellen CUT, Pestova TV . The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11: 113–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wurth L . Versatility of RNA-binding proteins in cancer. Comp Func Genomics 2012; 2012: 1–11.

    Article  CAS  Google Scholar 

  5. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M . microRNAs in cancer management. Lancet Oncol 2012; 13: e249–e258.

    Article  CAS  PubMed  Google Scholar 

  6. Castello A, Fischer B, Hentze MW, Preiss T . RNA-binding proteins in Mendelian disease. Trends Genet 2013; 29: 318–327.

    Article  CAS  PubMed  Google Scholar 

  7. White RJ . RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet 2008; 24: 622–629.

    Article  CAS  PubMed  Google Scholar 

  8. Delloye-Bourgeois C, Goldschneider D, Paradisi A, Therizols G, Belin S, Hacot S et al. Nucleolar localization of a netrin-1 isoform enhances tumor cell proliferation. Sci Signal 2012; 5: ra57–ra57.

    Article  PubMed  CAS  Google Scholar 

  9. Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008; 456: 971–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Signer RAJ, Magee JA, Salic A, Morrison SJ . Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 2014; 509: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012; 22: 51–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peltonen K, Colis L, Hester L, Trivedi R, Moubarek MS, Moore HM et al. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 2014; 25: 77–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcel V, Catez F, Diaz J-J . Ribosomes: the future of targeted therapies? Oncotarget 2013; 4: 1554–1555.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lane DP, Benchimol S . p53: oncogene or anti-oncogene? Genes Dev 1990; 4: 1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Brady CA, Attardi LD . p53 at a glance. J Cell Sci 2010; 123: 2527–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crawford LV, Pim DC, Lamb P . The cellular protein p53 in human tumours. Mol Biol Med 1984; 2: 261–272.

    CAS  PubMed  Google Scholar 

  17. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  18. Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M . TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  19. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238.

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH . Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990; 348: 747–749.

    Article  CAS  PubMed  Google Scholar 

  21. Donehower LA, Lozano G . 20 Years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009; 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  22. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  23. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bieging KT, Mello SS, Attardi LD . Unravelling mechanisms of p53-mediated tumour suppresion. Nat Rev Cancer 2014; 14: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004; 36: 63–68.

    Article  CAS  PubMed  Google Scholar 

  26. Timofeev O, Schlereth K, Wanzel M, Braun A, Nieswandt B, Pagenstecher A et al. p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. Cell Rep 2013; 3: 1512–1525.

    Article  CAS  PubMed  Google Scholar 

  27. Valente LJ, Gray DHD, Michalak EM, Pinon-Hofbauer J, Egle A, Scott CL et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep 2013; 3: 1339–1345.

    Article  CAS  PubMed  Google Scholar 

  28. Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC et al. Regulation of autophagy by stress-responsive transcription factors. Sem Cancer Biol 2013; 23: 310–322.

    Article  CAS  Google Scholar 

  29. Li T, Kon N, Jiang Le, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meek DW, Anderson CW . Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harbor Perspect Biol 2009; 1: a000950.

    Article  CAS  Google Scholar 

  31. Vilborg A, Wilhelm MT, Wiman KG . Regulation of tumor suppressor p53 at the RNA level. J Mol Med 2010; 88: 645–652.

    Article  CAS  PubMed  Google Scholar 

  32. Marcel V, Dichtel-Danjoy M-L, Sagne C, Hafsi H, Ma D, Ortiz-Cuaran S et al. Biological functions of p53 isoforms through evolution: lessons from animal and cellular models. Cell Death Differ 2011; 18: 1815–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Menendez D, Inga A, Resnick MA . The expanding universe of p53 targets. Nat Rev Cancer 2009; 9: 724–737.

    Article  CAS  PubMed  Google Scholar 

  34. Marcel V, Hainaut P . p53 isoforms - a conspiracy to kidnap p53 tumor suppressor activity? Cell Mol Life Sci 2008; 66: 391–406.

    Article  CAS  Google Scholar 

  35. Chakraborty A, Uechi T, Kenmochi N . Guarding the “translation apparatus”: defective ribosome biogenesis and the p53 signaling pathway. WIREs RNA 2011; 2: 507–522.

    Article  CAS  PubMed  Google Scholar 

  36. Sharathchandra A, Katoch A, Das S . IRES mediated translational regulation of p53 isoforms. WIREs RNA 2013; 5: 131–139.

    Article  PubMed  CAS  Google Scholar 

  37. Golomb L, Volarevic S, Oren M . p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588: 1–9.

    Article  CAS  Google Scholar 

  38. Fabian MR, Sonenberg N . The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19: 586–593.

    Article  CAS  PubMed  Google Scholar 

  39. Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 2013; 340: 82–85.

    Article  CAS  PubMed  Google Scholar 

  40. Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12: 613–626.

    Article  CAS  PubMed  Google Scholar 

  41. Xi Y . Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 2006; 12: 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  42. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  43. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis. Mol Cell 2007; 26: 731–743.

    Article  CAS  PubMed  Google Scholar 

  46. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 2007; 6: 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  47. Deng G, Sui G . Noncoding RNA in oncogenesis: a new era of identifying key players. Int J Mol Sci 2013; 14: 18319–18349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Freeman JA, Espinosa JM . The impact of post-transcriptional regulation in the p53 network. Brief Func Genomics 2013; 12: 46–57.

    Article  CAS  Google Scholar 

  49. Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A et al. Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 2013; 13: 552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  PubMed  Google Scholar 

  51. Chang C-J, Chao C-H, Xia W, Yang J-Y, Xiong Y, Li C-W et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Concepcion CP, Han Y-C, Mu P, Bonetti C, Yao E, D'Andrea A et al. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 2012; 8: e1002797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. Dicer is essential for mouse development. Nat Genet 2003; 35: 215–217.

    Article  CAS  PubMed  Google Scholar 

  54. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 2010; 142: 409–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell 2012; 47: 648–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R . RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14: 21705–21726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M et al. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ 2012; 19: 1992–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Menendez D, Nguyen T-A, Freudenberg JM, Mathew VJ, Anderson CW, Jothi R et al. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res 2013; 41: 7286–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Cho S-J, Shu L, Yan W, Guerrero T, Kent M et al. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev 2011; 25: 1528–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaccara S, Tebaldi T, Pederiva C, Ciribilli Y, Bisio A, Inga A . p53-directed translational control can shape and expand the universe of p53 target genes. Cell Death Differ 2014; 21: 1522–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuller-Pace FV . The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta 2013; 1829: 756–763.

    Article  CAS  PubMed  Google Scholar 

  62. Griseri P . Regulation of the mRNA half-life in breast cancer. World J Clin Oncol 2014; 5: 323.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Müller-McNicoll M, Neugebauer KM . How cells get the message: dynamic assembly and function of mRNA-protein complex. Nat Rev Genet 2013; 14: 275–287.

    Article  PubMed  CAS  Google Scholar 

  64. Oberosler P, Hloch P, Ramsperger U, Stahl H . p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J 1993; 12: 2389–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu L, Bayle JH, Elenbaas B, Pavletich NP, Levine AJ . Alternatively spliced forms in the carboxy-terminal domain of the p53 protein regulate its ability to promote annealing of complementary single strands of nucleic acids. Mol Cell Biol 1995; 15: 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Riley KJL . Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA 2006; 12: 620–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Riley KJL, James Maher L III . Analysis of p53–RNA interactions in cultured human cells. Biochem Biophys Res Commun 2007; 363: 381–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Riley KJL, Maher LJ . p53 RNA interactions: New clues in an old mystery. RNA 2007; 13: 1825–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fontoura BM, Sorokina EA, David E, Carroll RB . p53 is covalently linked to 5.8S rRNA. Mol Cell Biol 1992; 12: 5145–5151.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Galy B, Créancier L, Prado-Lourenço L, Prats A-C, Prats H . p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 2001; 20: 4613–4620.

    Article  CAS  PubMed  Google Scholar 

  71. Galy B, Créancier L, Zanibellato C, Prats A-C, Prats H . Tumour suppressor p53 inhibits human fibroblast growth factor 2 expression by a post-transcriptional mechanism. Oncogene 2001; 20: 1669–1677.

    Article  CAS  PubMed  Google Scholar 

  72. Ewen ME, Oliver CJ, Sluss HK, Miller SJ, Peeper DS . p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. Genes Dev 1995; 9: 204–217.

    Article  CAS  PubMed  Google Scholar 

  73. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME . p53 binds selectively to the 5' untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta - and p53-mediated translational inhibition of cdk4. Mol Cell Biol 2000; 20: 8420–8431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M . One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 2012; 19: 560–567.

    Article  CAS  PubMed  Google Scholar 

  75. Anger AM, Armache J-P, Berninghausen O, Habeck M, Subklewe M, Wilson DN et al. Structures of the human and Drosophila 80S ribosome. Nature 2013; 497: 80–85.

    Article  CAS  PubMed  Google Scholar 

  76. Jenner L, Melnikov S, Garreau de Loubresse N, Ben-Shem A, Iskakova M, Urzhumtsev A et al. Crystal structure of the 80S yeast ribosome. Curr Opin Struct Biol 2012; 22: 759–767.

    Article  CAS  PubMed  Google Scholar 

  77. Xue S, Barna M . Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 2012; 13: 355–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Teng T, Thomas G, Mercer CA . Growth control and ribosomopathies. Curr Opin Genet Dev 2013; 23: 63–71.

    Article  CAS  PubMed  Google Scholar 

  79. Williams GT, Farzaneh F . Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer 2012; 12: 84–88.

    Article  CAS  PubMed  Google Scholar 

  80. Marcel V, Ghayad SE, Belin S, Gabriell T, Morel A-P, Solano-Gonzàlez E et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 2013; 24: 318–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruggero D . Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003; 299: 259–262.

    Article  CAS  PubMed  Google Scholar 

  82. Yoon A, Peng G, Brandenburger Y, Brandenburg Y, Zollo O, Xu W et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 2006; 312: 902–906.

    Article  CAS  PubMed  Google Scholar 

  83. Bellodi C, McMahon M, Contreras A, Juliano D, Kopmar N, Nakamura T et al. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 2013; 3: 1493–1502.

    Article  CAS  PubMed  Google Scholar 

  84. Simeonova I, Jaber S, Draskovic I, Bardot B, Fang M, Bouarich-Bourimi R et al. Mutant mice lacking the p53 C-terminal domain model telomere syndromes. Cell Rep 2013; 3: 2046–2058.

    Article  CAS  PubMed  Google Scholar 

  85. Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A et al. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 2011; 13: 809–818.

    Article  CAS  PubMed  Google Scholar 

  86. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324: 218–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Loayza-Puch F, Drost J, Rooijers K, Lopes R, Elkon R, Agami R . p53 induces transcriptional and translational programs to suppress cell proliferation and growth. Genome Biol 2013; 14: R32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brooks RF . Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell 1977; 12: 311–317.

    Article  CAS  PubMed  Google Scholar 

  89. Pederson T . The nucleolus. Cold Spring Harbor Perspect Biol 2011; 3: a000638–a000638.

    Google Scholar 

  90. Henras AK, Soudet J, Gérus M, Lebaron S, Caizergues-Ferrer M, Mougin A et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 2008; 65: 2334–2359.

    Article  CAS  PubMed  Google Scholar 

  91. Trere D . Nucleolar size and activity are related to pRb and p53 status in human breast cancer. J Histochem Cytochem 2004; 52: 1601–1607.

    Article  CAS  PubMed  Google Scholar 

  92. Budde A, Grummt I . p53 represses ribosomal gene transcription. Oncogene 1999; 18: 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  93. Zhai W, Comai L . Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 2000; 20: 5930–5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cairns CA, White RJ . p53 is a general repressor of RNA polymerase III transcription. EMBO J 1998; 17: 3112–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chesnokov I, Chu WM, Botchan MR, Schmid CW . p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol Cell Biol 1996; 16: 7084–7088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stein T, Crighton D, Boyle JM, Varley JM, White RJ . RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li-Fraumeni syndrome. Oncogene 2002; 21: 2961–2970.

    Article  CAS  PubMed  Google Scholar 

  97. Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML et al. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014; 505: 564–568.

    Article  CAS  PubMed  Google Scholar 

  98. Zhu N, Gu L, Findley HW, Zhou M . Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53. Biochem Biophys Res Commun 2005; 335: 1272–1279.

    Article  CAS  PubMed  Google Scholar 

  99. Nathan CA, Sanders K, Abreo FW, Nassar R, Glass J . Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Cancer Res 2000; 60: 3599–3604.

    CAS  PubMed  Google Scholar 

  100. Obad S, Brunnström H, Vallon-Christersson J, Borg A, Drott K, Gullberg U . Staf50 is a novel p53 target gene conferring reduced clonogenic growth of leukemic U-937 cells. Oncogene 2004; 23: 4050–4059.

    Article  CAS  PubMed  Google Scholar 

  101. Petersson J, Ageberg M, Sandén C, Olofsson T, Gullberg U, Drott K . The p53 target gene TRIM22 directly or indirectly interacts with the translation initiation factor eIF4E and inhibits the binding of eIF4E to eIF4G. Biol Cell 2012; 104: 462–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO . p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002; 21: 5325–5334.

    Article  CAS  PubMed  Google Scholar 

  103. Budanov AV, Karin M . p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; 134: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Constantinou C, Bushell M, Jeffrey IW, Tilleray V, West M, Frost V et al. p53-induced inhibition of protein synthesis is independent of apoptosis. Eur J Biochem 2003; 270: 3122–3132.

    Article  CAS  PubMed  Google Scholar 

  105. Tilleray V, Constantinou C, Clemens MJ . Regulation of protein synthesis by inducible wild-type p53 in human lung carcinoma cells. FEBS Lett 2006; 580: 1766–1770.

    Article  CAS  PubMed  Google Scholar 

  106. Constantinou C, Clemens MJ . Regulation of translation factors eIF4GI and 4E-BP1 during recovery of protein synthesis from inhibition by p53. Cell Death Differ 2007; 14: 576–585.

    Article  CAS  PubMed  Google Scholar 

  107. Barkić M, Crnomarković S, Grabusić K, Bogetić I, Panić L, Tamarut S et al. The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol Cell Biol 2009; 29: 2489–2504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Donehower LA . Rapamycin as longevity enhancer and cancer preventative agent in the context of p53 deficiency. Aging 2012; 4: 660–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Comas M, Toshkov I, Kuropatwinski KK, Chernova OB, Polinsky A, Blagosklonny MV et al. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/- mice by delaying carcinogenesis. Aging 2012; 4: 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G, Leontieva OV et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging 2012; 4: 709–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA et al. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife 2014; 3: e02200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wu Y, Mehew JW, Heckman CA, Arcinas M, Boxer LM . Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 2001; 20: 240–251.

    Article  CAS  PubMed  Google Scholar 

  113. Khoury MP, Bourdon J-C . p53 isoforms: an intracellular microprocessor? Genes Cancer 2011; 2: 453–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol 2009; 11: 1135–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin S-C, Karoly ED, Taatjes DJ . The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function. Aging Cell 2013; 12: 863–872.

    Article  CAS  PubMed  Google Scholar 

  116. Boominathan L . The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev 2010; 29: 613–639.

    Article  CAS  PubMed  Google Scholar 

  117. Cam M, Bid HK, Xiao L, Zambetti GP, Houghton PJ, Cam H . p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through two independent parallel pathways in the presence of DNA damage. J Biol Chem 2014; 289: 4083–4094.

    Article  CAS  PubMed  Google Scholar 

  118. Boldrup L, Coates PJ, Laurell G, Nylander K . p63 transcriptionally regulates BNC1, a Pol I and Pol II transcription factor that regulates ribosomal biogenesis and epithelial differentiation. Eur J Cancer 2012; 48: 1401–1406.

    Article  CAS  PubMed  Google Scholar 

  119. Candi E, Amelio I, Agostini M, Melino G . MicroRNAs and p63 in epithelial stemness. Cell Death Differ 2014; 22: 12–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhang Q, Shalaby NA, Buszczak M . Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 2014; 343: 298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Watanabe-Susaki K, Takada H, Enomoto K, Miwata K, Ishimine H, Intoh A et al. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 2014; 32: 3099–3111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those works that have not been cited in this article because of lack of space. This article was supported by CNRS, INSERM, Université Claude Bernard Lyon 1, Centre Léon Bérard, Fondation ARC pour la Recherche sur le Cancer (n° SFI20121205802), Ligue Nationale Contre le Cancer Comité Rhône-Alpes-Auvergne et Saône et Loire (n°13-763C), ANR (13-BSV8-0012-01 Ribometh) and PAIR Sein (n°ARC_INCa_LNCC_7625). VM was a recipient of a postdoctoral fellowship from Centre Léon Bérard. VM and J-JD are members of INSERM. FC is member of CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Marcel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcel, V., Catez, F. & Diaz, JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 34, 5513–5523 (2015). https://doi.org/10.1038/onc.2015.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.25

This article is cited by

Search

Quick links