Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNA-192 suppresses liver metastasis of colon cancer

Abstract

Metastasis causes most deaths from colon cancer yet mechanistic understanding and therapeutic options remain limited. Here we show that expression of microRNA (miR)-192 is inversely correlated with metastatic potential of colon cancer cells. Ectopic expression of miR-192 sensitizes colon cancer cells to growth factor deprivation stress-induced apoptosis, whereas inhibition of miR-192 confers resistance. Overexpression of miR-192 inhibits metastatic colonization to the liver in an orthotopic mouse model of colon cancer. Alterations associated with the metastatic phenotype in the primary tumors include increased apoptosis, decreased proliferation and angiogenesis. Further studies indicate that miR-192 downregulates expression of Bcl-2, Zeb2 and VEGFA in vitro and in vivo, which is responsible for enhanced apoptosis, increased expression of E-cadherin and decreased angiogenesis in vivo, respectively. Finally, studies performed on human colonic adenocarcinoma show that expression of miR-192 is significantly reduced in neoplastic cells as compared with normal colonic epithelium. Importantly, there is a significant decrease in miR-192 expression in stage IV tumors when compared with stage I or II lesions. These findings indicate that miR-192 has an important role in colon cancer development and progression. Our studies underscore the clinical relevance and prognostic significance of miR-192 expression in colon cancer. Therefore, a major implication of our studies is that restoration of miR-192 expression or antagonism of its target genes (Bcl-2, Zeb2 or VEGFA) may have considerable therapeutic potential for anti-metastatic therapy in patients with colon cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ et al. Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Yokota J . Tumor progression and metastasis. Carcinogenesis 2000; 21: 497–503.

    Article  CAS  PubMed  Google Scholar 

  3. Fidler IJ . The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  4. Mehlen P, Puisieux A . Metastasis: a question of life or death. Nat Rev Cancer 2006; 6: 449–458.

    Article  CAS  PubMed  Google Scholar 

  5. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L et al. DAP kinase links the control of apoptosis to metastasis. Nature 1997; 390: 180–184.

    Article  CAS  PubMed  Google Scholar 

  6. Stoeltzing O, Liu W, Reinmuth N, Parikh A, Ahmad SA, Jung YD et al. Angiogenesis and antiangiogenic therapy of colon cancer liver metastasis. Ann Surg Oncol 2003; 10: 722–733.

    Article  PubMed  Google Scholar 

  7. Meng F, Wu G . The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 2012; 31: 455–467.

    Article  CAS  PubMed  Google Scholar 

  8. Du T, Zamore PD . Microprimer: the biogenesis and function of microRNA. Development 2005; 132: 4645–4652.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  11. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang B, Pan X, Cobb GP, Anderson TA . microRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302: 1–12.

    Article  CAS  PubMed  Google Scholar 

  13. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  15. Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 2012; 11: 4352–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS et al. MicroRNA-1280 inhibits invasion and metastasis by targeting ROCK1 in bladder cancer. PLoS One 2012; 7: e46743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian Q, Liang L, Ding J, Zha R, Shi H, Wang Q et al. MicroRNA-550a acts as a pro-metastatic gene and directly targets cytoplasmic polyadenylation element-binding protein 4 in hepatocellular carcinoma. PLoS One 2012; 7: e48958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33: 6566–6578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simms N, Rajput A, Sharratt EA, Ongchin M, Teggart CA, Wang J et al. Transforming growth factor-ss suppresses metastasis in a subset of human colon carcinoma cells. BMC Cancer 2012; 12: 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y, Liu XQ, Rajput A, Geng L, Ongchin M, Zeng Q et al. Phosphatase PRL-3 is a direct regulatory target of TGFbeta in colon cancer metastasis. Cancer Res 2011; 71: 234–244.

    Article  CAS  PubMed  Google Scholar 

  21. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol 2009; 11: 881–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299: 425–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiang Y, Song Y, Wang Z, Liu Z, Gao P, Liang J et al. microRNA-192, -194 and -215 are frequently downregulated in colorectal cancer. Exp Ther Med 2012; 3: 560–566.

    Article  CAS  PubMed  Google Scholar 

  24. Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J . Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. J Biol Chem 2011; 286: 16082–16090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC . IAP regulation of metastasis. Cancer Cell 2010; 17: 53–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  28. Betel D, Koppal A, Agius P, Sander C, Leslie C . Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010; 11: R90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Han W, Zborowska E, Liang J, Wang X, Willson JK et al. Reduced expression of transforming growth factor beta type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem 1996; 271: 17366–17371.

    Article  CAS  PubMed  Google Scholar 

  32. Ye SC, Foster JM, Li W, Liang J, Zborowska E, Venkateswarlu S et al. Contextual effects of transforming growth factor beta on the tumorigenicity of human colon carcinoma cells. Cancer Res 1999; 59: 4725–4731.

    CAS  PubMed  Google Scholar 

  33. Wang J, Sun L, Myeroff L, Wang X, Gentry LE, Yang J et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem 1995; 270: 22044–22049.

    Article  CAS  PubMed  Google Scholar 

  34. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–1338.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, Cao L et al. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res 2008; 68: 4221–4228.

    Article  CAS  PubMed  Google Scholar 

  36. Zubeldia IG, Bleau AM, Redrado M, Serrano D, Agliano A, Gil-Puig C et al. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFbeta1-targeting peptides P17 and P144. Exp Cell Res 2013; 319: 12–22.

    Article  CAS  PubMed  Google Scholar 

  37. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005; 65: 2296–2302.

    Article  CAS  PubMed  Google Scholar 

  38. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 2008; 13: 23–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kriegel AJ, Fang Y, Liu Y, Tian Z, Mladinov D, Matus IR et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 2010; 38: 8338–8347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D . Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010; 21: 438–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salovaara R, Roth S, Loukola A, Launonen V, Sistonen P, Avizienyte E et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 2002; 51: 56–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999; 59: 320–324.

    CAS  PubMed  Google Scholar 

  43. Karakas T, Maurer U, Weidmann E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia. Ann Oncol 1998; 9: 159–165.

    Article  CAS  PubMed  Google Scholar 

  44. Agui T, McConkey DJ, Tanigawa N . Comparative study of various biological parameters, including expression of survivin, between primary and metastatic human colonic adenocarcinomas. Anticancer Res 2002; 22: 1769–1776.

    CAS  PubMed  Google Scholar 

  45. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bendardaf R, Buhmeida A, Hilska M, Laato M, Syrjanen S, Syrjanen K et al. VEGF-1 expression in colorectal cancer is associated with disease localization, stage, and long-term disease-specific survival. Anticancer Res 2008; 28: 3865–3870.

    PubMed  Google Scholar 

  47. Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ . Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 1998; 17: 227–236.

    Article  CAS  PubMed  Google Scholar 

  48. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yue X, Wang P, Xu J, Zhu Y, Sun G, Pang Q et al. MicroRNA-205 functions as a tumor suppressor in human glioblastoma cells by targeting VEGF-A. Oncol Rep 2012; 27: 1200–1206.

    Article  CAS  PubMed  Google Scholar 

  50. Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res 2011; 17: 7654–7663.

    Article  CAS  PubMed  Google Scholar 

  51. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 2011; 208: 875–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang B, Herman-Edelstein M, Koh P, Burns W, Jandeleit-Dahm K, Watson A et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes 2010; 59: 1794–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Z, Selaru FM, Cheng Y, Kan T, Agarwal R, Mori Y et al. MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 2011; 30: 1577–1585.

    Article  CAS  PubMed  Google Scholar 

  54. Kang MH, Reynolds CP . Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009; 15: 1126–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moreira JN, Santos A, Simoes S . Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev Recent Clin Trials 2006; 1: 217–235.

    Article  CAS  PubMed  Google Scholar 

  56. Klinger M, Tamandl D, Eipeldauer S, Hacker S, Herberger B, Kaczirek K et al. Bevacizumab improves pathological response of colorectal cancer liver metastases treated with XELOX/FOLFOX. Ann Surg Oncol 2010; 17: 2059–2065.

    Article  PubMed  Google Scholar 

  57. Tejpar S, Prenen H, Mazzone M . Overcoming resistance to antiangiogenic therapies. Oncologist 2012; 17: 1039–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boyd DD, Levine AE, Brattain DE, McKnight MK, Brattain MG . Comparison of growth requirements of two human intratumoral colon carcinoma cell lines in monolayer and soft agarose. Cancer Res 1988; 48: 2469–2474.

    CAS  PubMed  Google Scholar 

  59. Yokoi K, Thaker PH, Yazici S, Rebhun RR, Nam DH, He J et al. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res 2005; 65: 3716–3725.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI funding R01CA140988-01 and Nebraska Department of Health and Human Services (LB506) 2013-40 to JW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, L., Chaudhuri, A., Talmon, G. et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33, 5332–5340 (2014). https://doi.org/10.1038/onc.2013.478

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.478

Keywords

This article is cited by

Search

Quick links