Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXO3a loss is a frequent early event in high-grade pelvic serous carcinogenesis

Abstract

Serous ovarian carcinoma is the most lethal gynecological malignancy in Western countries. The molecular events that underlie the development of the disease have been elusive for many years. The recent identification of the fallopian tube secretory epithelial cells (FTSECs) as the cell-of-origin for most cases of this disease has led to studies aimed at elucidating new candidate therapeutic pathways through profiling of normal FTSECs and serous carcinomas. Here we describe the results of transcriptional profiles that identify the loss of the tumor suppressive transcription factor FOXO3a in a vast majority of high-grade serous ovarian carcinomas. We show that FOXO3a loss is a hallmark of the earliest stages of serous carcinogenesis and occurs both at the DNA, RNA and protein levels. We describe several mechanisms responsible for FOXO3a inactivity, including chromosomal deletion (chromosome 6q21), upregulation of miRNA-182 and destabilization by activated PI3K and MEK. The identification of pathways involved in the pathogenesis of ovarian cancer can advance the management of this disease from being dependant on surgery and cytotoxic chemotherapy alone to the era of targeted therapy. Our data strongly suggest FOXO3a as a possible target for clinical intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yap TA, Carden CP, Kaye SB . Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 2009; 9: 167–181.

    Article  CAS  Google Scholar 

  2. Levanon K, Crum C, Drapkin R . New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 2008 10; 26: 5284–5293.

    Article  Google Scholar 

  3. Kindelberger DW, Lee Y, Miron A, Hirsch MS, Feltmate C, Medeiros F et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol 2007; 31: 161–169.

    Article  Google Scholar 

  4. Medeiros F, Muto MG, Lee Y, Elvin JA, Callahan MJ, Feltmate C et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 2006; 30: 230–236.

    Article  Google Scholar 

  5. Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol 2007; 211: 26–35.

    Article  CAS  Google Scholar 

  6. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441: 523–527.

    Article  CAS  Google Scholar 

  7. Fu Z, Tindall DJ . FOXOs, cancer and regulation of apoptosis. Oncogene 2008; 27: 2312–2319.

    Article  CAS  Google Scholar 

  8. Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ . Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 2007; 282: 27141–27154.

    Article  CAS  Google Scholar 

  9. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007; 282: 30107–30119.

    Article  CAS  Google Scholar 

  10. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 2008; 105: 13987–13992.

    Article  CAS  Google Scholar 

  11. Calnan DR, Brunet A . The FoxO code. Oncogene 2008; 27: 2276–2288.

    Article  CAS  Google Scholar 

  12. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10: 138–148.

    Article  CAS  Google Scholar 

  13. Wang F, Nguyen M, Qin FX, Tong Q . SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6: 505–514.

    Article  CAS  Google Scholar 

  14. Nakamura T, Sakamoto K . Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol 2008; 281: 47–55.

    Article  CAS  Google Scholar 

  15. Rathbone CR, Booth FW, Lees SJ . FoxO3a preferentially induces p27Kip1 expression while impairing muscle precursor cell-cycle progression. Muscle Nerve 2008; 37: 84–89.

    Article  CAS  Google Scholar 

  16. McGovern UB, Francis RE, Peck B, Guest SK, Wang J, Myatt SS et al. Gefitinib (Iressa) represses FOXM1 expression via FOXO3a in breast cancer. Mol Cancer Ther 2009; 8: 582–591.

    Article  CAS  Google Scholar 

  17. Carter ME, Brunet A . FOXO transcription factors. Curr Biol 2007; 17: R113–R114.

    Article  CAS  Google Scholar 

  18. Fei M, Zhao Y, Wang Y, Lu M, Cheng C, Huang X et al. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest 2009; 27: 52–59.

    Article  CAS  Google Scholar 

  19. Lu M, Zhao Y, Xu F, Wang Y, Xiang J, Chen D . The expression and prognosis of FOXO3a and Skp2 in human ovarian cancer. Med Oncol 2012; 29: 3409–3415.

    Article  CAS  Google Scholar 

  20. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117: 225–237.

    Article  CAS  Google Scholar 

  21. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 2012; 18: 892–901.

    Article  CAS  Google Scholar 

  22. Kim W, Youn H, Kwon T, Kang J, Kim E, Son B et al. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res 2013; 70: 90–101.

    Article  CAS  Google Scholar 

  23. Yamaguchi H, Hsu JL, Chen CT, Wang YN, Hsu MC, Chang SS et al. Caspase-independent cell death is involved in the negative effect of EGF receptor inhibitors on cisplatin in non-small cell lung cancer cells. Clin Cancer Res 2013; 19: 845–854.

    Article  CAS  Google Scholar 

  24. Kornblau SM, Singh N, Qiu Y, Chen W, Zhang N, Coombes KR . Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia. Clin Cancer Res 2010; 16: 1865–1874.

    Article  CAS  Google Scholar 

  25. Osuka S, Sampetrean O, Shimizu T, Saga I, Onishi N, Sugihara E et al. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 2013; 31: 627–640.

    Article  CAS  Google Scholar 

  26. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM . FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 2007; 73: 2189–2198.

    Article  Google Scholar 

  27. Myatt SS, Lam EW . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    Article  CAS  Google Scholar 

  28. Gomes AR, Brosens JJ, Lam EW . Resist or die: FOXO transcription factors determine the cellular response to chemotherapy. Cell Cycle 2008; 7: 3133–3136.

    Article  CAS  Google Scholar 

  29. Su JL, Cheng X, Yamaguchi H, Chang YW, Hou CF, Lee DF et al. FOXO3a-Dependent mechanism of E1A-induced chemosensitization. Cancer Res 2011; 71: 6878–6887.

    Article  CAS  Google Scholar 

  30. Zhao F, Lam EW . Role of the forkhead transcription factor FOXO-FOXM1 axis in cancer and drug resistance. Front Med 2012; 6: 376–380.

    Article  Google Scholar 

  31. Karst AM, Drapkin R . Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nat Protoc 2012; 7: 1755–1764.

    Article  CAS  Google Scholar 

  32. Karst AM, Levanon K, Drapkin R . Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci USA 2011; 108: 7547–7552.

    Article  CAS  Google Scholar 

  33. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  34. Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR et al. The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 2009; 37 (Database issue): D755–D761.

    Article  CAS  Google Scholar 

  35. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.

    Article  CAS  Google Scholar 

  36. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    Article  CAS  Google Scholar 

  37. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007; 448: 553–560.

    Article  CAS  Google Scholar 

  38. Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009; 106: 1814–1819.

    Article  CAS  Google Scholar 

  39. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 2007; 104: 7564–7569.

    Article  CAS  Google Scholar 

  40. Jarboe EA, Folkins AK, Drapkin R, Ince TA, Agoston ES, Crum CP . Tubal and ovarian pathways to pelvic epithelial cancer: a pathological perspective. Histopathology 2008; 53: 127–138.

    Article  CAS  Google Scholar 

  41. Folkins AK, Jarboe EA, Saleemuddin A, Lee Y, Callahan MJ, Drapkin R et al. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol Oncol 2008; 109: 168–173.

    Article  CAS  Google Scholar 

  42. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309–323.

    Article  CAS  Google Scholar 

  43. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA . Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003; 301: 215–218.

    Article  CAS  Google Scholar 

  44. Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 2005; 115: 2382–2392.

    Article  CAS  Google Scholar 

  45. Dejean AS, Beisner DR, Ch'en IL, Kerdiles YM, Babour A, Arden KC et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 2009; 10: 504–513.

    Article  CAS  Google Scholar 

  46. Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22: 2111–2123.

    Article  CAS  Google Scholar 

  47. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008; 455: 547–551.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Institutes of Health/National Cancer Institute (P50 CA105009, U01 CA152990, and R21 CA156021), the Ovarian Cancer Research Fund, The Mary Kay Foundation, The Tina Brozman Foundation, The Robert and Debra First Fund, the Gamel Family Fund for Ovarian Cancer, the Marsha Rivkin Foundation Scientific Scholar Award, the AACR- George and Patricia Sehl Fellowship for Cancer Genetics Research, the American Physicians Fellowship for Medicine in Israel—Claire and Emmanuel G. Rosenblatt Foundation Grant, The Israel Science Foundation Legacy Heritage Clinical Research Initiative, The Israel Cancer Research Fund Clinical Research Career Development Award and the Chaim Sheba Medical Center Dr Pinchas Bornstein Talpiot Medical Leadership Program.We thank Drs. John Quackenbush, Massimo Loda, Keith Ligon and Sekhar Duraisamy, Dana-Farber Cancer Institute, for their suggestions and generous assistance with reagents and bioinformatics; Dr Ravid Straussman, the Broad Institute, for his guidance with methylation detection; Dr Sol Efroni and Rotem Ben-Hamo, Bar llan University, Israel, for bioinformatic support; and The Chaim Sheba Tissue Bank.

DISCLAIMER

Some results published here are based upon data generated by The Cancer Genome Atlas Pilot Project (http://cancergenome.nih.gov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Levanon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levanon, K., Sapoznik, S., Bahar-Shany, K. et al. FOXO3a loss is a frequent early event in high-grade pelvic serous carcinogenesis. Oncogene 33, 4424–4432 (2014). https://doi.org/10.1038/onc.2013.394

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.394

Keywords

This article is cited by

Search

Quick links