Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrin α3β1–CD151 complex regulates dimerization of ErbB2 via RhoA

Abstract

Integrin α3β1 regulates adhesive interactions of cells with laminins and have a critical role in adhesion-dependent cellular responses. Here, we examined the role of α3β1-integrin in ErbB2-dependent proliferation of breast cancer cells in three-dimensional laminin-rich extracellular matrix (3D lr-ECM). Depletion of α3β1 in ErbB2-overexpressing breast cancer cells suppressed growth and restore cell polarity in 3D lr-ECM. The phenotype of α3β1-depleted cells was reproduced upon depletion of tetraspanin CD151 and mirrored that of the cells treated with Herceptin, an established ErbB2 antagonist. Breast cancer cells expressing the α3β1–CD151 complex have higher steady-state phosphorylation of ErbB2 and show enhanced dimerization of the protein when compared with α3β1-/CD151-depleted cells. Furthermore, Herceptin-dependent dephosphorylation of ErbB2 was only observed in α3β1–CD151-expressing cells. Importantly, the inhibitory activity of Herceptin was more pronounced when cells expressed both α3β1 and CD151. We also found that the level of active RhoA was increased in α3β1- and CD151-depleted cells and that Rho controls dimerization of ErbB2. Expression of α3β1 alone did not have significant prognostic value in patients with invasive ductal carcinoma of the breast. However, expression of α3β1 in combination with CD151 represented a more stringent indicator of poor survival than CD151 alone. Taken together, these results demonstrate that the α3β1–CD151 complex has a critical regulatory role in ErbB2-dependent signalling and thereby may be involved in breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hynes NE, MacDonald G . ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 2009; 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  2. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L . Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012; 9: 16–32.

    Article  CAS  Google Scholar 

  3. Bailey TA, Luan H, Clubb RJ, Naramura M, Band V, Raja SM et al. Mechanisms of Trastuzumab resistance in ErbB2-driven breast cancer and newer opportunities to overcome therapy resistance. J Carcinogen 2011; 10: 28.

    Article  CAS  Google Scholar 

  4. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol 2011; 29: 166–173.

    Article  CAS  PubMed  Google Scholar 

  5. Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J et al. Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci USA 2011; 108: 3761–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC et al. Beta1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res 2011; 13: R84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ . HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 2010; 122: 35–43.

    Article  CAS  PubMed  Google Scholar 

  8. Reim F, Dombrowski Y, Ritter C, Buttmann M, Hausler S, Ossadnik M et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res 2009; 69: 8058–8066.

    Article  CAS  PubMed  Google Scholar 

  9. Giancotti FG . Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 2007; 28: 506–511.

    Article  CAS  PubMed  Google Scholar 

  10. Falcioni R, Antonini A, Nistico P, Di SS, Crescenzi M, Natali PG et al. Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 1997; 236: 76–85.

    Article  CAS  PubMed  Google Scholar 

  11. Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ et al. ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 2010; 123 (Part 8): 1373–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huck L, Pontier SM, Zuo DM, Muller WJ . Beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci USA 2010; 107: 15559–15564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramirez NE, Zhang Z, Madamanchi A, Boyd KL, O’Rear LD, Nashabi A et al. The alphabeta integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest 2011; 121: 226–237.

    Article  CAS  PubMed  Google Scholar 

  14. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ et al. Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 2006; 66: 1526–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lesniak D, Xu Y, Deschenes J, Lai R, Thoms J, Murray D et al. Beta1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer. Cancer Res 2009; 69: 8620–8628.

    Article  CAS  PubMed  Google Scholar 

  16. Chen LL, Gabarra V, Cho S, Browning B, Cao X, Huet H et al. Functional characterization of integrin alpha6beta4 adhesion interactions using soluble integrin constructs reveals the involvement of different functional domains in the beta4 subunit. Cell Commun Adhes 2008; 15: 317–331.

    Article  CAS  PubMed  Google Scholar 

  17. Yang XH, Flores LM, Li Q, Zhou P, Xu F, Krop IE et al. Disruption of laminin–integrin–CD151–focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 2010; 70: 2256–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stipp CS . Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 2010; 12: e3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R et al. The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 2000; 87: 336–342.

    Article  CAS  PubMed  Google Scholar 

  20. Berry MG, Gui GP, Wells CA, Carpenter R . Integrin expression and survival in human breast cancer. Eur J Surg Oncol 2004; 30: 484–489.

    Article  CAS  PubMed  Google Scholar 

  21. Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD et al. CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 2009; 7: 787–798.

    Article  CAS  PubMed  Google Scholar 

  22. Kwon MJ, Park S, Choi JY, Oh E, Kim YJ, Park YH et al. Clinical significance of CD151 overexpression in subtypes of invasive breast cancer. Br J Cancer 2012; 106: 923–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deng X, Li Q, Hoff J, Novak M, Yang H, Jin H et al. Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 2012; 14: 678–689.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 2001; 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME . An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 2002; 158: 1299–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duan L, Chen G, Virmani S, Ying G, Raja SM, Chung BM et al. Distinct roles for Rho versus Rac/Cdc42 GTPases downstream of Vav2 in regulating mammary epithelial acinar architecture. J Biol Chem 2010; 285: 1555–1568.

    Article  CAS  PubMed  Google Scholar 

  27. Itoh RE, Kurokawa K, Ohba Y, Yoshizaki H, Mochizuki N, Matsuda M . Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol Cell Biol 2002; 22: 6582–6591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scales TME, Jayo A, Obara B, Holt MR, Hotchin NA, Berditchevski F et al. α3β1 integrins regulate CD151 complex assembly and membrane dynamics in carcinoma cells within 3D environments. Oncogene 2013; 32: 3965–3979.

    Article  CAS  PubMed  Google Scholar 

  29. Hong IK, Jeoung DI, Ha KS, Kim YM, Lee H . Tetraspanin CD151 stimulates adhesion-dependent activation of Ras, Rac, and Cdc42 by facilitating molecular association between[beta]1 integrins and small GTPases. J Biol Chem 2012; 287: 32027–32039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang F, Michaelson JE, Moshiach S, Sachs N, Zhao W, Sun Y et al. Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. Blood 2011; 118: 4274–4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006; 126: 489–502.

    Article  CAS  PubMed  Google Scholar 

  32. Wang SE, Xiang B, Zent R, Quaranta V, Pozzi A, Arteaga CL . Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res 2009; 69: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alexi X, Berditchevski F, Odintsova E . The effect of cell–ECM adhesion on signalling via the ErbB family of growth factor receptors. Biochem Soc Trans 2011; 39: 568–573.

    Article  CAS  PubMed  Google Scholar 

  34. Lemmon MA . Ligand-induced ErbB receptor dimerization. Exp Cell Res 2009; 315: 638–648.

    Article  CAS  PubMed  Google Scholar 

  35. Prakash A, Janosi L, Doxastakis M . GxxxG motifs, phenylalanine, and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors. Biophys J 2011; 101: 1949–1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Penuel E, Akita RW, Sliwkowski MX . Identification of a region within the ErbB2/HER2 intracellular domain that is necessary for ligand-independent association. J Biol Chem 2002; 277: 28468–28473.

    Article  CAS  PubMed  Google Scholar 

  37. Orr G, Hu D, Ozcelik S, Opresko LK, Wiley HS, Colson SD . Cholesterol dictates the freedom of EGF receptors and HER2 in the plane of the membrane. Biophys J 2005; 89: 1362–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharpe S, Barber KR, Grant CW . Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Biochemistry 2002; 41: 2341–2352.

    Article  CAS  PubMed  Google Scholar 

  39. Sottocornola E, Misasi R, Mattei V, Ciarlo L, Gradini R, Garofalo T et al. Role of gangliosides in the association of ErbB2 with lipid rafts in mammary epithelial HC11 cells. FEBS J 2006; 273: 1821–1830.

    Article  CAS  PubMed  Google Scholar 

  40. Nagy P, Vereb G, Sebestyen Z, Horvath G, Lockett SJ, Damjanovich S et al. Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2. J Cell Sci 2002; 115 (Part 22): 4251–4262.

    Article  CAS  PubMed  Google Scholar 

  41. Malaval C, Laffargue M, Barbaras R, Rolland C, Peres C, Champagne E et al. RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell Signal 2009; 21: 120–127.

    Article  CAS  PubMed  Google Scholar 

  42. Sahai E, Olson MF, Marshall CJ . Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 2001; 20: 755–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banyard J, Anand-Apte B, Symons M, Zetter BR . Motility and invasion are differentially modulated by Rho family GTPases. Oncogene 2000; 19: 580–591.

    Article  CAS  PubMed  Google Scholar 

  44. Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A . Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 2003; 116 (Part 4): 725–742.

    Article  CAS  PubMed  Google Scholar 

  45. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res 2011; 71: 1871–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C et al. Tetraspanin cd151 regulates glycosylation of alpha3beta1 integrin. J Biol Chem 2008; 283: 35445–35454.

    Article  CAS  PubMed  Google Scholar 

  47. Berditchevski F, Chang S, Bodorova J, Hemler ME . Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem 1997; 272: 29174–29180.

    Article  CAS  PubMed  Google Scholar 

  48. Hemler ME, Ware CF, Strominger JL . Characterization of a novel differentiation antigen complex recognized by a monoclonal antibody (A-1A5): unique activation-specific molecular forms on stimulated T cells. J Immunol 1983; 131: 334–340.

    CAS  PubMed  Google Scholar 

  49. Tachibana I, Bodorova J, Berditchevski F, Zutter MM, Hemler ME . NAG-2, a novel transmembrane-4 superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins. J Biol Chem 1997; 272: 29181–29189.

    Article  CAS  PubMed  Google Scholar 

  50. Weitzman JB, Pasqualini R, Takada Y, Hemler ME . The function and distinctive regulation of the integrin VLA-3 in cell adhesion, spreading and homotypic cell aggregation. J Biol Chem 1993; 268: 8651–8657.

    CAS  PubMed  Google Scholar 

  51. Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F . Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 2010; 70: 4698–4708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parsons M, Messent AJ, Humphries JD, Deakin NO, Humphries MJ . Quantification of integrin receptor agonism by fluorescence lifetime imaging. J Cell Sci 2008; 121 (Part 3): 265–271.

    Article  CAS  PubMed  Google Scholar 

  53. Morton PE, Parsons M . Measuring FRET using time-resolved FLIM. Methods Mol Biol 2011; 769: 403–413.

    Article  CAS  PubMed  Google Scholar 

  54. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25: 118–145.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to all our colleagues for their generous gifts of the reagents that were used in this study. This work was supported by the WE Dunn Trust, CR UK Grant C1322/A5705 (to FB), Royal Society University Research Fellowship (to MP) and NCN Grant No. 2011/01/B/NZ4/04910 (to RK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Odintsova or F Berditchevski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novitskaya, V., Romanska, H., Kordek, R. et al. Integrin α3β1–CD151 complex regulates dimerization of ErbB2 via RhoA. Oncogene 33, 2779–2789 (2014). https://doi.org/10.1038/onc.2013.231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.231

Keywords

This article is cited by

Search

Quick links