Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RSK promotes G2 DNA damage checkpoint silencing and participates in melanoma chemoresistance

Abstract

The incidence of malignant melanoma is growing rapidly worldwide and there is still no effective therapy for metastatic disease. This type of cancer is highly resistant to conventional DNA-damaging chemotherapeutics, and intense research has been dedicated for understanding the molecular pathways underlying chemoresistance. The Ras/mitogen-activated protein kinase (MAPK) signalling pathway is often deregulated in melanoma, which frequently harbours activating mutations in NRAS or BRAF. Herein, we demonstrate that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) contributes to melanoma chemoresistance by altering their response to chemotherapeutic agents. We find that RSK phosphorylates checkpoint kinase 1 (Chk1) at an inhibitory site, Ser280, both in vitro and in vivo. Our results indicate that RSK is the predominant protein kinase operating downstream of mitogens and oncogenes of the Ras/MAPK pathway, and consistent with this, we find that RSK constitutively phosphorylates Chk1 in melanoma. We show that RSK inhibition increases Chk1 activity in response to DNA-damaging agents, suggesting that the Ras/MAPK pathway modulates Chk1 function and the response to DNA damage. Accordingly, we demonstrate that RSK promotes G2 DNA damage checkpoint silencing in a Chk1-dependent manner, and find that RSK inhibitors sensitize melanoma cells to DNA-damaging agents. Together, our results identify a novel link between the Ras/MAPK pathway and the DNA damage response, and suggest that RSK inhibitors may be used to modulate chemosensitivity, which is one of the major obstacles to melanoma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meloche S, Pouyssegur J . The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26: 3227–3239.

    Article  CAS  PubMed  Google Scholar 

  2. Yoon S, Seger R . The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Fact 2006; 24: 21–44.

    Article  CAS  Google Scholar 

  3. Rubinfeld H, Seger R . The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 2005; 31: 151–174.

    Article  CAS  PubMed  Google Scholar 

  4. Schubbert S, Shannon K, Bollag G . Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007; 7: 295–308.

    Article  CAS  PubMed  Google Scholar 

  5. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS . BRAF(E600) in benign and malignant human tumours. Oncogene 2008; 27: 877–895.

    Article  CAS  PubMed  Google Scholar 

  6. Dhomen N, Marais R . New insight into BRAF mutations in cancer. Curr Opin Genet Dev 2007; 17: 31–39.

    Article  CAS  PubMed  Google Scholar 

  7. Cargnello M, Roux PP . Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75: 50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romeo Y, Zhang X, Roux PP . Regulation and function of the RSK family of protein kinases. Biochem J 2012; 441: 553–569.

    Article  CAS  PubMed  Google Scholar 

  9. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA . Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res 2005; 65: 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  10. Clark DE, Errington TM, Smith JA, Frierson HF, Weber MJ, Lannigan DA . The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res 2005; 65: 3108–3116.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen MS, Zhang C, Shokat KM, Taunton J . Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005; 308: 1318–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romeo Y, Roux PP . Paving the way for targeting RSK in cancer. Expert Opin Ther Targets 2011; 15: 5–9.

    Article  CAS  PubMed  Google Scholar 

  13. Old WM, Shabb JB, Houel S, Wang H, Couts KL, Yen CY et al. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Mol Cell 2009; 34: 115–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller AJ, Mihm MC . Melanoma. N Engl J Med 2006; 355: 51–65.

    Article  CAS  PubMed  Google Scholar 

  15. Eton O, Legha SS, Moon TE, Buzaid AC, Papadopoulos NE, Plager C et al. Prognostic factors for survival of patients treated systemically for disseminated melanoma. J Clin Oncol 1998; 16: 1103–1111.

    Article  CAS  PubMed  Google Scholar 

  16. Fecher LA, Amaravadi RK, Flaherty KT . The MAPK pathway in melanoma. Curr Opin Oncol 2008; 20: 183–189.

    Article  CAS  PubMed  Google Scholar 

  17. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  18. Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci USA 2010; 107: 14903–14908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    Article  CAS  PubMed  Google Scholar 

  20. Markovic SN, Erickson LA, Rao RD, Weenig RH, Pockaj BA, Bardia A et al. Malignant melanoma in the 21st century, part 2: staging, prognosis, and treatment. Mayo Clin Proc 2007; 82: 490–513.

    Article  PubMed  Google Scholar 

  21. Flaherty KT . Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res 2006; 12 (7 Pt 2): 2366s–2370s.

    Article  CAS  PubMed  Google Scholar 

  22. Gogas HJ, Kirkwood JM, Sondak VK . Chemotherapy for metastatic melanoma: time for a change? Cancer 2007; 109: 455–464.

    Article  CAS  PubMed  Google Scholar 

  23. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 2010; 468: 973–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koberle B, Tomicic MT, Usanova S, Kaina B . Cisplatin resistance: preclinical findings and clinical implications. Biochim Biophys Acta 2010; 1806: 172–182.

    PubMed  Google Scholar 

  27. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31: 1869–1883.

    Article  CAS  PubMed  Google Scholar 

  28. Walker M, Black EJ, Oehler V, Gillespie DA, Scott MT . Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene 2009; 28: 2314–2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M . Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 2007; 27: 2572–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Poon RY . The multiple checkpoint functions of CHK1 and CHK2 in maintenance of genome stability. Front Biosci 2008; 13: 5016–5029.

    CAS  PubMed  Google Scholar 

  31. Shtivelman E, Sussman J, Stokoe D . A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle. Curr Biol 2002; 12: 919–924.

    Article  CAS  PubMed  Google Scholar 

  32. Li P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y et al. P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell 2012; 23: 1582–1592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 2005; 7: 193–204.

    Article  CAS  PubMed  Google Scholar 

  34. King FW, Skeen J, Hay N, Shtivelman E . Inhibition of Chk1 by activated PKB/Akt. Cell Cycle 2004; 3: 634–637.

    CAS  PubMed  Google Scholar 

  35. Sapkota GP, Cummings L, Newell FS, Armstrong C, Bain J, Frodin M et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J 2007; 401: 29–38.

    Article  CAS  PubMed  Google Scholar 

  36. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408: 297–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S et al. A comprehensive map of the mTOR signaling network. Mol Syst Biol 2011; 6: 453.

    Google Scholar 

  38. Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 2008; 18: 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  39. Roux PP, Richards SA, Blenis J . Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol 2003; 23: 4796–4804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malumbres M, Barbacid MRAS . oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  41. van de Weerdt BC, Medema RH . Polo-like kinases: a team in control of the division. Cell Cycle 2006; 5: 853–864.

    Article  CAS  PubMed  Google Scholar 

  42. Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A et al. Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 2006; 16: 1950–1955.

    Article  CAS  PubMed  Google Scholar 

  43. Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006; 23: 319–329.

    Article  CAS  PubMed  Google Scholar 

  44. Liu XS, Song B, Liu X . The substrates of Plk1, beyond the functions in mitosis. Protein Cell 2010; 1: 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  46. Soengas MS, Lowe SW . Apoptosis and melanoma chemoresistance. Oncogene 2003; 22: 3138–3151.

    Article  CAS  PubMed  Google Scholar 

  47. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004; 101: 13489–13494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282: 14056–14064.

    Article  CAS  PubMed  Google Scholar 

  49. Julien LA, Carriere A, Moreau J, Roux PP . mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signalling. Mol Cell Biol 2010; 30: 908–921.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of our laboratory for their insightful discussions and comments on the manuscript and the data. This work was supported by grants from the Canadian Cancer Society Research Institute (700878) and the Cancer Research Society (DF121153) PP Roux holds a Canada Research Chair in Signal Transduction and Proteomics. JA Galan holds a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR). IRIC core facilities are supported by the FRSQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Roux.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray-David, H., Romeo, Y., Lavoie, G. et al. RSK promotes G2 DNA damage checkpoint silencing and participates in melanoma chemoresistance. Oncogene 32, 4480–4489 (2013). https://doi.org/10.1038/onc.2012.472

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.472

Keywords

This article is cited by

Search

Quick links