Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR

Subjects

Abstract

The tuberous sclerosis complex gene 2 (TSC2)/mammalian target of rapamycin (mTOR) pathway controls many cellular functions via phosphorylation of ribosomal protein S6 kinases (S6Ks). Alternative splicing and translation generate three S6K1 proteins. Although nuclear and cytoplasmic S6K targets are known, the nucleocytoplasmic localization of the S6K1 proteins has not been comparatively elucidated so far. We show that in primary fibroblasts p85 S6K1 is cytoplasmic, p70 can be found in both compartments and p31 is exclusively nuclear. As already known for p70 and p85, our data suggest that p31 is also a target of mTOR-mediated phosphorylation. Blocking mTOR kinase activity via rapamycin and its activation in TSC2−/− cells and via TSC2 small interfering RNAs revealed that it regulates the localization of p70, but not of p85 and p31. The mTOR-dependent phosphorylation of p70 S6K1 at T389 is essential for its nuclear localization and exclusively hyperphosphorylated p70 S6K1 can be found in the nucleus. We further demonstrate this mTOR-controlled p70 S6K1 localization to be growth factor dependent. During the cell-cycle phosphorylation and nuclear localization of p70 S6K1 occur in mid G1 phase. We report that the different S6K1 proteins exhibit different nucleocytoplasmic localizations and that the TSC2/mTOR cascade not only regulates p70 S6K1 activity, but also its localization. These findings provide new important insights into the temporal and spatial dynamics of TSC2/mTOR/S6K regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

mTOR:

mammalian target of rapamycin

PI3K:

phosphatidylinositol-3-kinase

siRNA:

small interfering RNA

S6K:

ribosomal protein S6 kinase

TSC2:

tuberous sclerosis complex gene 2

References

  • Cheatham L, Monfar M, Chou MM, Blenis J . (1995). Structural and functional analysis of pp70S6K. Proc Natl Acad Sci USA 92: 11696–11700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang GG, Abraham RT . (2007). Targeting the mTOR signaling network in cancer. Trends Mol Med 13: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Coffer PJ, Woodgett JR . (1994). Differential subcellular localization of two isoforms of p70 S6 protein kinase. Biochem Biophys Res Com 198: 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Edelmann HML, Kühne C, Petritsch C, Ballou LM . (1996). Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in swiss mouse 3T3 fibroblasts. J Biol Chem 271: 963–971.

    Article  CAS  PubMed  Google Scholar 

  • Fenton TR, Gout IT . (2011). Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43: 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Hengstschläger M, Bettelheim D, Rosner M, Repa C, Deutinger J, Bernaschek G . (2001). Extended prenatal survival of a non-mosaic trisomy 22 with aneuploid cytotrophoblasts. Prenat Diagn 21: 897–899.

    Article  PubMed  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J . (2005). mTOR and S6K1 mediate assembly of the translation initiation complex through dynamic interchange and ordered phosphorylation events. Cell 123: 569–580.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yoshizawa F, Furuya N, Fujimura S et al. (2004). Amino acids and insulin control authophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279: 8452–8459.

    Article  CAS  PubMed  Google Scholar 

  • Karni R, Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . (2007). The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14: 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Akcakanat A, Singh G, Sharma C, Meric-Bernstam F . (2009). Regulation and localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors 27: 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Chen J . (2000). Cytoplasmic-nuclear shuttling of FKBP12-rapamycin associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA 97: 14340–14345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-J, Kahn CR . (1997). Insulin stimulates p70 S6 kinase in the nucleus of cells. Biochem Biophys Res Com 234: 681–685.

    Article  CAS  PubMed  Google Scholar 

  • Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D . (2003). Mutations spectrum of the 9q34 tuberous sclerosis gene TSC1 in translational cell carcinoma of the bladder. Cancer Res 63: 7652–7656.

    CAS  PubMed  Google Scholar 

  • Meyuhas O, Dreazen A . (2010). Ribosomal protein S6 kinase: from TOP mRNAs to cell size. Progr Mol Biol Translat Sci 90: 109–153.

    Article  Google Scholar 

  • Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V et al. (2006). Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser17. J Biol Chem 281: 31188–31201.

    Article  CAS  PubMed  Google Scholar 

  • Plas DR, Thomas G . (2009). Tubers and tumors: rapamycin therapy for benign and malignant tumors. Curr Op Cell Biol 21: 230–236.

    Article  CAS  PubMed  Google Scholar 

  • Reinhard C, Fernandez A, Lamb NJC, Thomas G . (1994). Nuclear localization of p85S6K: functional requirement for entry into S phase. EMBO J 13: 1557–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosner M, Hengstschläger M . (2008). Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17: 2934–2948.

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Freilinger A, Hanneder M, Fujita N, Lubec G, Tsuruo T et al. (2007). p27Kip1 localization depends on the tumor suppressor protein tuberin. Hum Mol Genet 16: 1541–1556.

    Article  CAS  PubMed  Google Scholar 

  • Rosner M, Fuchs C, Siegel N, Valli A, Hengstschläger M . (2009). Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Hum Mol Genet 18: 3298–3310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschläger M . (2010). Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 5: 1081–1095.

    Article  CAS  PubMed  Google Scholar 

  • Ruvinsky I, Meyuhas O . (2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31: 342–346.

    Article  CAS  PubMed  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Peled L et al. (2008). The Rag GTPases bind raptor and mediate amino acid signalling to mTORC1. Science 320: 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalm SS, Blenis J . (2002). Identification of a conserved motif required for mTOR signaling. Curr Biol 12: 632–639.

    Article  CAS  PubMed  Google Scholar 

  • Schalm SS, Tee AR, Blenis J . (2005). Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation. J Biol Chem 280: 11101–11106.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Peterson TR, Sabatini DM . (2010). Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ . (2008). mTOR signaling: RAG GTPases transmit the amino acid signal. Trends Biochem Sci 33: 565–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin I, Rotty J, Wu FY, Arteaga CL . (2005). Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 280: 6055–6063.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Proud CG . (2009). Nutrient control of TORC1, a cell-cycle regulator. Trends Cell Biol 19: 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Weng Q-P, Andrabi K, Kozlowski MT, Grove JR, Avruch J . (1995). Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol 15: 2333–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Guan K-L . (2007). Expanding mTOR signaling. Cell Res 17: 666–681.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in our laboratory is supported via grants from the Herzfelder'sche Familienstiftung and the Österreichische Nationalbank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hengstschläger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosner, M., Hengstschläger, M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene 30, 4509–4522 (2011). https://doi.org/10.1038/onc.2011.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.165

Keywords

This article is cited by

Search

Quick links