Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab

Abstract

KRAS mutation is a predictive biomarker for resistance to cetuximab (Erbitux) in metastatic colorectal cancer (mCRC). This study sought to determine if KRAS mutant CRC lines could be sensitized to cetuximab using dasatinib (BMS-354825, Sprycel), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src family kinases (SFKs). We analyzed 16 CRC lines for: (1) KRAS mutation status, (2) dependence on mutant KRAS signaling and (3) expression level of epidermal growth factor receptor (EGFR) and SFKs. From these analyses, we selected three KRAS mutant (LS180, LoVo and HCT116) cell lines and two KRAS wild-type cell lines (SW48 and CaCo2). In vitro, using poly-D-lysine/laminin plates, KRAS mutant cell lines were resistant to cetuximab, whereas KRAS wild-type lines showed sensitivity to cetuximab. Treatment with cetuximab and dasatinib showed a greater antiproliferative effect on KRAS mutant lines when compared with either agent alone in vitro and in vivo. To investigate potential mechanisms for this antiproliferative response in the combinatorial therapy, we performed Human Phospho-Kinase Antibody Array analysis, measuring the relative phosphorylation levels of 39 intracellular proteins in untreated, cetuximab, dasatinib or the combinatorial treatment in the KRAS mutant lines LS180, LoVo and HCT116 cells. The results of this experiment showed a decrease in a broad spectrum of kinases centered on the β-catenin pathway, the mitogen-activated protein kinase (MAPK) pathway, AKT/mammalian target of rapamycin (mTOR) pathway and the family of signal transducers and activators of transcription (STATs) when compared with the untreated control or monotherapy treatments. Next, we analyzed tumor growth with cetuximab, dasatinib or their combination in vivo. KRAS mutant xenografts showed resistance to cetuximab therapy, whereas KRAS wild type demonstrated an antitumor response when treated with cetuximab. KRAS mutant tumors exhibited minimal response to dasatinib monotherapy. However, as in vitro, KRAS mutant lines exhibited a response to the combination of cetuximab and dasatinib. Combinatorial treatment of KRAS mutant xenografts resulted in decreased cell proliferation, as measured by Ki67, and higher rates of apoptosis, as measured by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). The data presented in this study indicate that dasatinib can sensitize KRAS mutant CRC tumors to cetuximab and may do so by altering the activity of several key signaling pathways. Furthermore, these results suggest that signaling via EGFR and SFKs may be necessary for cell proliferation and survival of KRAS mutant CRC tumors. These data strengthen the rationale for clinical trials combining cetuximab and dasatinib in the KRAS mutant CRC genetic setting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ABL:

v-abl Abelson murin leukemia viral oncogene homolog 1

BCR:

breakpoint cluster region

CRC:

colorectal cancer

EGFR:

epidermal growth factor receptor

eNOS:

endothelial nitric oxide synthase

FAK:

focal adhesion kinase-1

FDA:

Food and Drug Administration

GSK α/β:

glycogen synthase kinase α/β

HNSCC:

head and neck squamous cell carcinoma

IgG:

immunoglobulin G

IHC:

immunohistochemistry

MAPK:

mitogen-activated protein kinase

mCRC:

metastatic colorectal cancer

MEK:

MAPK kinase

MSK:

mitogen and stress-activated protein kinase

mTOR:

mammalian target of rapamycin

NSCLC:

non-small cell lung cancer

PDL:

poly-D-lysine

PDGFR:

platelet-derived growth factor receptor

PI3K:

phosphatidylinositol 3-kinase

PKC:

protein kinase C

PLCγ:

phospholipase C-γ

RSK:

ribosomal s6 kinase

RTK:

receptor tyrosine kinase

SFK:

Src-family kinase

STAT:

signal transducer and activator of transcription

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

References

  • Abram CL, Courtneidge SA . (2000). Src family tyrosine kinases and growth factor signaling. Exp Cell Res 254: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE . (2002). Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94: 344–351.

    Article  PubMed  Google Scholar 

  • Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF et al. (2009). American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27: 2091–2096.

    Article  PubMed  Google Scholar 

  • Bardelli A, Siena S . (2010). Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28: 1254–1261.

    Article  CAS  PubMed  Google Scholar 

  • Belsches AP, Haskell MD, Parsons SJ . (1997). Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front Biosci 2: d501–d518.

    Article  CAS  PubMed  Google Scholar 

  • Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA, Parsons SJ . (2001). Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20: 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S et al. (2007). Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67: 2643–2648.

    Article  CAS  PubMed  Google Scholar 

  • Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ . (2000). Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2: 203–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ . (1999a). c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem 274: 8335–8343.

    Article  CAS  PubMed  Google Scholar 

  • Biscardi JS, Tice DA, Parsons SJ . (1999b). c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res 76: 61–119.

    Article  CAS  PubMed  Google Scholar 

  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ et al. (2003). Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424: 694–698.

    Article  CAS  PubMed  Google Scholar 

  • Blake RA, Garcia-Paramio P, Parker PJ, Courtneidge SA . (1999). Src promotes PKCdelta degradation. Cell Growth Differ 10: 231–241.

    CAS  PubMed  Google Scholar 

  • Blume-Jensen P, Hunter T . (2001). Oncogenic kinase signalling. Nature 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Bolen JB, Veillette A, Schwartz AM, DeSeau V, Rosen N . (1987). Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 84: 2251–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM et al. (2001). Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 98: 7319–7324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell Jr JE . (1998). Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18: 2553–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappuzzo F, Finocchiaro G, Rossi E, Janne PA, Carnaghi C, Calandri C et al. (2008). EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann Oncol 19: 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Cartwright CA, Coad CA, Egbert BM . (1994). Elevated c-Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. J Clin Invest 93: 509–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright CA, Kamps MP, Meisler AI, Pipas JM, Eckhart W . (1989). pp60c-src activation in human colon carcinoma. J Clin Invest 83: 2025–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright CA, Meisler AI, Eckhart W . (1990). Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. Proc Natl Acad Sci USA 87: 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N et al. (2008). KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19: 508–515.

    Article  CAS  PubMed  Google Scholar 

  • DeMali KA, Godwin SL, Soltoff SP, Kazlauskas A . (1999). Multiple roles for Src in a PDGF-stimulated cell. Exp Cell Res 253: 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Denning MF, Dlugosz AA, Threadgill DW, Magnuson T, Yuspa SH . (1996). Activation of the epidermal growth factor receptor signal transduction pathway stimulates tyrosine phosphorylation of protein kinase C delta. J Biol Chem 271: 5325–5331.

    Article  CAS  PubMed  Google Scholar 

  • Di Fiore F, Blanchard F, Charbonnier F, Le Pessot F, Lamy A, Galais MP et al. (2007). Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. Br J Cancer 96: 1166–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emaduddin M, Bicknell DC, Bodmer WF, Feller SM . (2008). Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells. Proc Natl Acad Sci USA 105: 2358–2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    Article  CAS  PubMed  Google Scholar 

  • Fabian JR, Daar IO, Morrison DK . (1993). Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol Cell Biol 13: 7170–7179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fearon ER, Vogelstein B . (1990). A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Fu YN, Yeh CL, Cheng HH, Yang CH, Tsai SF, Huang SF et al. (2008). EGFR mutants found in non-small cell lung cancer show different levels of sensitivity to suppression of Src: implications in targeting therapy. Oncogene 27: 957–965.

    Article  CAS  PubMed  Google Scholar 

  • Ghoda L, Lin X, Greene WC . (1997). The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J Biol Chem 272: 21281–21288.

    Article  CAS  PubMed  Google Scholar 

  • Hantschel O, Rix U, Superti-Furga G . (2008). Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk Lymphoma 49: 615–619.

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342.

    Article  CAS  PubMed  Google Scholar 

  • Irby R, Mao W, Coppola D, Jove R, Gamero A, Cuthbertson D et al. (1997). Overexpression of normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth but not metastatic potential. Cell Growth Differ 8: 1287–1295.

    CAS  PubMed  Google Scholar 

  • Irby RB, Mao W, Coppola D, Kang J, Loubeau JM, Trudeau W et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. (2008). Cancer statistics, 2008. CA Cancer J Clin 58: 71–96.

    Article  PubMed  Google Scholar 

  • Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS et al. (2008). PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68: 1953–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseloff E, Cataisson C, Aamodt H, Ocheni H, Blumberg P, Kraker AJ et al. (2002). Src family kinases phosphorylate protein kinase C delta on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. J Biol Chem 277: 12318–12323.

    Article  CAS  PubMed  Google Scholar 

  • Kantarjian H, Jabbour E, Grimley J, Kirkpatrick P . (2006). Dasatinib. Nat Rev Drug Discov 5: 717–718.

    Article  CAS  PubMed  Google Scholar 

  • Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC et al. (2008). K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  • Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, Wu S et al. (2007). Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25: 3230–3237.

    Article  CAS  PubMed  Google Scholar 

  • Kijima T, Niwa H, Steinman RA, Drenning SD, Gooding WE, Wentzel AL et al. (2002). STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ 13: 355–362.

    CAS  PubMed  Google Scholar 

  • Kim LC, Song L, Haura EB . (2009). Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6: 587–595.

    Article  PubMed  Google Scholar 

  • Koppikar P, Choi SH, Egloff AM, Cai Q, Suzuki S, Freilino M et al. (2008). Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 14: 4284–4291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronfeld I, Kazimirsky G, Lorenzo PS, Garfield SH, Blumberg PM, Brodie C . (2000). Phosphorylation of protein kinase Cdelta on distinct tyrosine residues regulates specific cellular functions. J Biol Chem 275: 35491–35498.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL . (2009). Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28: 3801–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Yu JC, Michieli P, Beeler JF, Ellmore N, Heidaran MA et al. (1994). Stimulation of the platelet-derived growth factor beta receptor signaling pathway activates protein kinase C-delta. Mol Cell Biol 14: 6727–6735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kufe D . (2001). The human DF3/MUC1 carcinoma-associated antigen signals nuclear localization of the catenin p120(ctn). Biochem Biophys Res Commun 281: 440–443.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Kuwahara H, Ren J, Wen G, Kufe D . (2001a). The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem 276: 6061–6064.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L et al. (2001b). The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276: 35239–35242.

    Article  CAS  PubMed  Google Scholar 

  • Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF et al. (2006). KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66: 3992–3995.

    CAS  PubMed  Google Scholar 

  • Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ . (1995). Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci USA 92: 6981–6985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J et al. (1997). Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15: 3083–3090.

    Article  CAS  PubMed  Google Scholar 

  • Marmor MD, Skaria KB, Yarden Y . (2004). Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 58: 903–913.

    Article  CAS  PubMed  Google Scholar 

  • McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC . (2005). The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5: 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Muller WJ . (1995). Direct and specific interaction of c-Src with Neu is involved in signaling by the epidermal growth factor receptor. Oncogene 11: 271–279.

    CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Siegel PM, Dankort DL, Webster MA, Muller WJ . (1994). Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol 14: 735–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS . (2003). Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer 10: 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F . (2009). Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A . (2001). The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8: 11–31.

    Article  CAS  PubMed  Google Scholar 

  • Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J . (1999). Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol 9: 810–820.

    Article  CAS  PubMed  Google Scholar 

  • Rini BI . (2008). Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res 14: 1286–1290.

    Article  CAS  PubMed  Google Scholar 

  • Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT . (1994). Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 14: 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger J . (2000). Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura A, Ballif BA, Richards SA, Blenis J . (2000). Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol 10: 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Summy JM, Gallick GE . (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22: 337–358.

    Article  CAS  PubMed  Google Scholar 

  • Talamonti MS, Roh MS, Curley SA, Gallick GE . (1993). Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J Clin Invest 91: 53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Termuhlen PM, Curley SA, Talamonti MS, Saboorian MH, Gallick GE . (1993). Site-specific differences in pp60c-src activity in human colorectal metastases. J Surg Res 54: 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Tice DA, Biscardi JS, Nickles AL, Parsons SJ . (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA 96: 1415–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61: 5090–5101.

    CAS  PubMed  Google Scholar 

  • Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69: 4286–4293.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S et al. (2008). Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27: 3944–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler DL, Iida M, Kruser TJ, Nechrebecki MM, Dunn EF, Armstrong EA et al. (2009). Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 8: 696–703.

    Article  CAS  PubMed  Google Scholar 

  • Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS . (2002). MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 22: 2871–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Doshi A, Lei M, Eck MJ, Harrison SC . (1999). Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3: 629–638.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al. (1995). Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269: 81–83.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kalyankrishna S, Wislez M, Thilaganathan N, Saigal B, Wei W et al. (2007). SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines. Am J Pathol 170: 366–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported, in part, by grant P30CA014520 from the National Cancer Institute, grant 1UL1RR025011 from the Clinical and Translational Science Award program of the National Center for Research Resources, National Institutes of Health (to DLW), by grant RSG-10-193-01-TBG from the American Cancer Society (to DLW) and T32 grant CA009614-17 Physician Scientist Training in Cancer Medicine from the National Institutes of Health (to EFD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Wheeler.

Ethics declarations

Competing interests

DLW has held a sponsored research agreement with Bristol-Myers Squibb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, E., Iida, M., Myers, R. et al. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene 30, 561–574 (2011). https://doi.org/10.1038/onc.2010.430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.430

Keywords

This article is cited by

Search

Quick links