Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The p16INK4A tumor suppressor regulates cellular oxidative stress

Abstract

Mutations or deletions in the cyclin-dependent kinase inhibitor p16INK4A are associated with multiple cancer types, but are more commonly found in melanoma tumors and associated with familial melanoma predisposition. Although p16 is thought to function as a tumor suppressor by negatively regulating the cell cycle, it remains unclear why the genetic compromise of p16 predisposes to melanoma over other cancers. Here we describe a novel role for p16 in regulating oxidative stress in several cell types, including melanocytes. Expression of p16 was rapidly upregulated following ultraviolet-irradiation and in response to H2O2-induced oxidative stress in a p38 stress-activated protein kinase-dependent manner. Knockdown of p16 using small interfering RNA increased intracellular reactive oxygen species (ROS) and oxidative (8-oxoguanine) DNA damage, which was further enhanced by H2O2 treatment. Elevated ROS levels were also observed in p16-depleted human keratinocytes and in whole skin and dermal fibroblasts from Cdkn2a-deficient mice. Aberrant ROS and p38 signaling in Cdkn2a-deficient fibroblasts was normalized by expression of exogenous p16. The effect of p16 depletion on ROS was not recapitulated by the knockdown of retinoblastoma protein (Rb) and did not require Rb. Finally, p16-mediated suppression of ROS could not be attributed to the potential effects of p16 on cell cycle phase. These findings suggest a potential alternate Rb-independent tumor-suppressor function of p16 as an endogenous regulator of carcinogenic intracellular oxidative stress. Compared with keratinocytes and fibroblasts, we also found increased susceptibility of melanocytes to oxidative stress in the context of p16 depletion, which may explain why the compromise of p16 predisposes to melanoma over other cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC . (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93: 13742–13747.

    Article  CAS  Google Scholar 

  • Becker TM, Haferkamp S, Dijkstra MK, Scurr LL, Frausto M, Diefenbach E et al. (2009). The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a. Mol Cancer 8: 4.

    Article  Google Scholar 

  • Becker TM, Rizos H, Kefford RF, Mann GJ . (2001). Functional impairment of melanoma-associated p16(INK4a) mutants in melanoma cells despite retention of cyclin-dependent kinase 4 binding. Clin Cancer Res 7: 3282–3288.

    CAS  Google Scholar 

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS et al. (2000). BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102: 257–265.

    Article  CAS  Google Scholar 

  • Bockholt SM, Burridge K . (1995). An examination of focal adhesion formation and tyrosine phosphorylation in fibroblasts isolated from src-, fyn-, and yes- mice. Cell Adhes Commun 3: 91–100.

    Article  CAS  Google Scholar 

  • Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D . (2003). Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 120: 48–55.

    Article  CAS  Google Scholar 

  • Cathcart R, Schwiers E, Ames BN . (1983). Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134: 111–116.

    Article  CAS  Google Scholar 

  • Choi BY, Choi HS, Ko K, Cho YY, Zhu F, Kang BS et al. (2005). The tumor suppressor p16(INK4a) prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat Struct Mol Biol 12: 699–707.

    Article  CAS  Google Scholar 

  • Chung JS, Lee SB, Park SH, Kang ST, Na AR, Chang TS et al. (2009). Mitochondrial reactive oxygen species originating from Romo1 exert an important role in normal cell cycle progression by regulating p27(Kip1) expression. Free Radic Res 43: 729–737.

    Article  CAS  Google Scholar 

  • Cicchillitti L, Fasanaro P, Biglioli P, Capogrossi MC, Martelli F . (2003). Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J Biol Chem 278: 19509–19517.

    Article  CAS  Google Scholar 

  • Cotter MA, Thomas J, Cassidy P, Robinette K, Jenkins N, Florell SR et al. (2007). N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of ultraviolet-induced melanoma in mice. Clin Cancer Res 13: 5952–5958.

    Article  CAS  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  Google Scholar 

  • Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15: 294–303.

    Article  CAS  Google Scholar 

  • Eiberger W, Volkmer B, Amouroux R, Dherin C, Radicella JP, Epe B . (2008). Oxidative stress impairs the repair of oxidative DNA base modifications in human skin fibroblasts and melanoma cells. DNA Repair (Amst) 7: 912–921.

    Article  CAS  Google Scholar 

  • Flores JF, Walker GJ, Glendening JM, Haluska FG, Castresana JS, Rubio MP et al. (1996). Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 56: 5023–5032.

    CAS  Google Scholar 

  • Gilchrest BA, Park HY, Eller MS, Yaar M . (1996). Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 63: 1–10.

    Article  CAS  Google Scholar 

  • Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF et al. (2006). High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66: 9818–9828.

    Article  CAS  Google Scholar 

  • Grammatico P, Maresca V, Roccella F, Roccella M, Biondo L, Catricala C et al. (1998). Increased sensitivity to peroxidizing agents is correlated with an imbalance of antioxidants in normal melanocytes from melanoma patients. Exp Dermatol 7: 205–212.

    Article  CAS  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–505.

    Article  CAS  Google Scholar 

  • Haferkamp S, Becker TM, Scurr LL, Kefford RF, Rizos H . (2008). p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 7: 733–745.

    Article  CAS  Google Scholar 

  • Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H . (2009). Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 129: 1983–1991.

    Article  CAS  Google Scholar 

  • Herrling T, Jung K, Fuchs J . (2006). Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim Acta A Mol Biomol Spectrosc 63: 840–845.

    Article  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12: 446–451.

    Article  CAS  Google Scholar 

  • Leikam C, Hufnagel A, Schartl M, Meierjohann S . (2008). Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 27: 7070–7082.

    Article  CAS  Google Scholar 

  • Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M et al. (1995). Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375: 503–506.

    Article  CAS  Google Scholar 

  • Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW et al. (2002). Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21: 2180–2188.

    Article  CAS  Google Scholar 

  • Meyskens Jr FL, Farmer P, Fruehauf JP . (2001). Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14: 148–154.

    Article  CAS  Google Scholar 

  • Mooi WJ, Peeper DS . (2006). Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 355: 1037–1046.

    Article  CAS  Google Scholar 

  • Naidu S, Vijayan V, Santoso S, Kietzmann T, Immenschuh S . (2009). Inhibition and genetic deficiency of p38 MAPK up-regulates heme oxygenase-1 gene expression via Nrf2. J Immunol 182: 7048–7057.

    Article  CAS  Google Scholar 

  • Pashaei S, Li L, Zhang H, Spencer HJ, Schichman SA, Fan CY et al. (2008). Concordant loss of heterozygosity of DNA repair gene, hOGG1, in melanoma in situ and atypical melanocytic hyperplasia. J Cutan Pathol 35: 525–531.

    Article  Google Scholar 

  • Pavel S, van Nieuwpoort F, van der Meulen H, Out C, Pizinger K, Cetkovska P et al. (2004). Disturbed melanin synthesis and chronic oxidative stress in dysplastic naevi. Eur J Cancer 40: 1423–1430.

    Article  CAS  Google Scholar 

  • Piepkorn M . (2000). The expression of p16(INK4a), the product of a tumor suppressor gene for melanoma, is upregulated in human melanocytes by UVB irradiation. J Am Acad Dermatol 42: 741–745.

    Article  CAS  Google Scholar 

  • Raj D, Liu T, Samadashwily G, Li F, Grossman D . (2008). Survivin repression by p53, Rb and E2F2 in normal human melanocytes. Carcinogenesis 29: 194–201.

    Article  CAS  Google Scholar 

  • Riley PA . (1997). Melanin. Int J Biochem Cell Biol 29: 1235–1239.

    Article  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  Google Scholar 

  • Shapiro GI, Edwards CD, Ewen ME, Rollins BJ . (1998). p16INK4A participates in a G1 arrest checkpoint in response to DNA damage. Mol Cell Biol 18: 378–387.

    Article  CAS  Google Scholar 

  • Sharpless NE, DePinho RA . (1999). The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9: 22–30.

    Article  CAS  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K et al. (2006). Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8: 1291–1297.

    Article  CAS  Google Scholar 

  • Urabe K, Aroca P, Tsukamoto K, Mascagna D, Palumbo A, Prota G et al. (1994). The inherent cytotoxicity of melanin precursors: a revision. Biochim Biophys Acta 1221: 272–278.

    Article  CAS  Google Scholar 

  • Wang H-T, Choi B, Tang MS . (2010). Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts. Proc Natl Acad Sci USA 107: 2180–2185.

    Google Scholar 

  • Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z . (2008). Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2: 90–102.

    Article  CAS  Google Scholar 

  • Wood SR, Berwick M, Ley RD, Walter RB, Setlow RB, Timmins GS . (2006). UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc Natl Acad Sci USA 103: 4111–4115.

    Article  CAS  Google Scholar 

  • Zyrek-Betts J, Micale M, Lineen A, Chaudhuri PK, Keil S, Xue J et al. (2008). Malignant blue nevus with lymph node metastases. J Cutan Pathol 35: 651–657.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants AR050102 and CA125761, the Department of Dermatology, and the Huntsman Cancer Foundation. We acknowledge use of the DNA/peptide and Flow Cytometry core facilities and a pilot project grant supported by P30 CA042014 awarded to Huntsman Cancer Institute. We thank Bryan Welm for providing the pEI2 plasmid and technical support for our lentiviral production and the MMHCC at the National Cancer Institute for providing B6.129-Cdkn2atm1Rdp mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Grossman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, N., Liu, T., Cassidy, P. et al. The p16INK4A tumor suppressor regulates cellular oxidative stress. Oncogene 30, 265–274 (2011). https://doi.org/10.1038/onc.2010.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.419

Keywords

This article is cited by

Search

Quick links