Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways

Abstract

Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug associated with anti-tumorigenic and pro-apoptotic properties in animal and in vitro models of cancer. However, the underlying cellular mechanisms by which TA exerts its effects are only partially understood. Activating transcription factor 3 (ATF3) is a member of the ATF/CREB subfamily of the basic region-leucine zipper family and has been known as a tumor suppressor in human colorectal cancer cells. The present study was performed to observe whether ATF3 mediates TA-induced apoptosis and to elucidate the molecular mechanism of ATF3 transcription induced by TA. TA treatment and ectopic expression of ATF3 increased apoptosis, whereas knockdown of ATF3 resulted in significant repression of TA-activated apoptosis. The TA treatment also induced ATF3 promoter activity. Internal deletion and point mutation of the predicted ATF/C/EBP binding site in ATF3 promoter abolished luciferase activation by TA. Overexpression of ATF2 resulted in significant increase in ATF3 promoter activity, and electrophoretic mobility shift assay identified this region as a core sequence to which ATF2 binds. TA treatment resulted in an increase in ATF2 phosphorylation, which was followed by a subsequent increase in ATF3 transcription. Knock down of ATF2 abolished TA-induced ATF3 expression. We further provide evidence that TA leads to increases in phospho-p38 MAPK, JNK and ERK levels. Inhibition of these pathways using selective inhibitors and dominant negative constructs ameliorated TA-induced ATF3 expression and promoter activities. The current study shows that TA stimulates ATF3 expression and subsequently induces apoptosis. These pathways are mediated through phosphorylation of ATF2, which is mediated by p38 MAPK-, JNK- and ERK-dependent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abdelrahim M, Baker CH, Abbruzzese JL, Safe S . (2006). Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst 98: 855–868.

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahim MB, Baker CH, Abbruzzese JL, Sheikh-Hamad D, Liu S, Cho SD et al. (2007). Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Res 67: 3286–3294.

    Article  CAS  PubMed  Google Scholar 

  • Allan AL, Albanese C, Pestell RG, LaMarre J . (2001). Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. J Biol Chem 276: 27272–27280.

    Article  CAS  PubMed  Google Scholar 

  • Baek SJ, Kim JS, Jackson FR, Eling TE, McEntee MF, Lee SH . (2004). Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25: 2425–2432.

    Article  CAS  PubMed  Google Scholar 

  • Bhoumik A, Fichtman B, Derossi C, Breitwieser W, Kluger HM, Davis S et al. (2008). Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci USA 105: 1674–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhoumik A, Ronai Z . (2008). ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7: 2341–2345.

    Article  CAS  PubMed  Google Scholar 

  • Bottone Jr FG., Martinez JM, Alston-Mills B, Eling TE . (2004). Gene modulation by Cox-1 and Cox-2 specific inhibitors in human colorectal carcinoma cancer cells. Carcinogenesis 25: 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Bottone Jr FG, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE . (2005). The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Mol Cancer Ther 4: 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Brown SL, Sekhar KR, Rachakonda G, Sasi S, Freeman ML . (2008). Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Res 68: 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S et al. (2000). Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH(2)-terminal kinase and promoter response element. Blood 96: 2140–2148.

    CAS  PubMed  Google Scholar 

  • Chen HH, Wang DL . (2004). Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Mol Pharmacol 65: 1130–1140.

    Article  CAS  PubMed  Google Scholar 

  • Cho KN, Sukhthankar M, Lee SH, Yoon JH, Baek SJ . (2007). Green tea catechin (-)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. Eur J Cancer 43: 2404–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Liu H, Huang J, Cheng L, Keller ET, Parsons SJ et al. (2008). Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res 68: 9663–9670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H et al. (2002). ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene 21: 7488–7496.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Tappin I, Ronai Z . (2000). Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 275: 12560–12564.

    Article  CAS  PubMed  Google Scholar 

  • Gupta RA, Dubois RN . (2001). Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1: 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Hai T, Hartman MG . (2001). The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hai TW, Liu F, Allegretto EA, Karin M, Green MR . (1988). A family of immunologically related transcription factors that includes multiple forms of ATF and AP-1. Genes Dev 2: 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  • Hansen PE . (1994). Tolfenamic acid in acute and prophylactic treatment of migraine: a review. Pharmacol Toxicol 75 (Suppl 2): 81–92.

    Article  PubMed  Google Scholar 

  • Hao F, Tan M, Xu X, Han J, Miller DD, Tigyi G et al. (2007). Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA(1), p42 and p38alpha. Biochim Biophys Acta 1771: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Li X, Guo B . (2008). KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J Biol Chem 283: 29795–29801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC et al. (1999). The transcriptional program in the response of human fibroblasts to serum. Science 283: 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Kashiwakura Y, Ochiai K, Watanabe M, Abarzua F, Sakaguchi M, Takaoka M et al. (2008). Down-regulation of inhibition of differentiation-1 via activation of activating transcription factor 3 and Smad regulates REIC/Dickkopf-3-induced apoptosis. Cancer Res 68: 8333–8341.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Bahn JH, Choi CK, Whitlock NC, English AE, Safe S et al. (2008). ESE-1/EGR-1 pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells. Mol Cancer Ther 7: 3739–3750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Kim JS, Yamaguchi K, Eling TE, Baek SJ . (2005). Indole-3-carbinol and 3,3′-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochem Biophys Res Commun 328: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Yamaguchi K, Kim JS, Eling TE, Safe S, Park Y et al. (2006). Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 27: 972–981.

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Wolfgang CD, Hai T . (2006). Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281: 10473–10481.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J et al. (1989). Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8: 2023–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa T, Sano Y, Shinagawa T, Rahman Z, Sakuma T, Nomura S et al. (2008). ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene 27: 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K et al. (2007). Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol 27: 1730–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Inoue S, Yamada K, Watanabe M, Liu Q, Watanabe T et al. (2009). Differential usage of alternate promoters of the human stress response gene ATF3 in stress response and cancer cells. Nucleic Acids Res 37: 1438–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh YK, Lee HJ, Jeong MH, Rhee M, Mo JW, Song EH et al. (2008). Role of activating transcription factor 3 on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res 6: 1232–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouwens DM, de Ruiter ND, van der Zon GC, Carter AP, Schouten J, van der Burgt C et al. (2002). Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J 21: 3782–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  PubMed  Google Scholar 

  • Piyanuch R, Sukhthankar M, Wandee G, Baek SJ . (2007). Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett 258: 230–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Hua B, Adachi S, Guney I, Kawauchi J, Morioka M et al. (2005). Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. Embo J 24: 2590–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BR . (2007). Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179: 3622–3630.

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang CD, Liang G, Okamoto Y, Allen AE, Hai T . (2000). Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem 275: 16865–16870.

    Article  CAS  PubMed  Google Scholar 

  • Woo IS, Kohno T, Inoue K, Ishii S, Yokota J . (2002). Infrequent mutations of the activating transcription factor-2 gene in human lung cancer, neuroblastoma and breast cancer. Int J Oncol 20: 527–531.

    CAS  PubMed  Google Scholar 

  • Xue L, Firestone GL, Bjeldanes LF . (2005). DIM stimulates IFNgamma gene expression in human breast cancer cells via the specific activation of JNK and p38 pathways. Oncogene 24: 2343–2353.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Lee SH, Kim JS, Wimalasena J, Kitajima S, Baek SJ . (2006). Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res 66: 2376–2384.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Boyd DD . (2006). ATF3 regulates the stability of p53: a link to cancer. Cell Cycle 5: 926–929.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Lu D, Hai T, Boyd DD . (2005). Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. Embo J 24: 2425–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Dewille JW, Hai T . (2008). A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27: 2118–2127.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr T Hai (Ohio State University, Columbus, OH, USA) and Dr S Kitajima (Tokyo Medical and Dental University, Tokyo, Japan) for providing the pCG-ATF3 construct and ATF3 promoter, respectively. We thank Dr Philip Cohen (University of Dundee, Scotland, UK) and Dr Joo-Heon Yoon (Yonsei University, Seoul, Korea) for providing pEBG2T-GST-ATF2-6His- and CREB-expression vector, respectively. We thank Dr Melanie Cobb (University of Texas Southwestern Medical Center, Dallas, TX, USA) for providing wild type and dominant negative ERK2-expression vector. We also thank Misty Bailey for her critical reading of the paper. This work was supported by Grants from the American Cancer Society (CNE-111611), National Institutes of Health (R01CA108975) and the University of Tennessee, Center of Excellence in Livestock Diseases and Human Health to SJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Baek.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Bahn, J., Whitlock, N. et al. Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182–5192 (2010). https://doi.org/10.1038/onc.2010.251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.251

Keywords

This article is cited by

Search

Quick links