Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones

Abstract

There is a plethora of attractive drug targets in cancer, but their therapeutic exploitation proved more difficult than expected, and only rarely truly successful. One possibility not often considered in drug discovery is that cancer signaling pathways are not randomly arranged in cells, but orchestrated in specialized subcellular compartments. The identification of heat shock protein-90 (Hsp90) chaperones in mitochondria of tumors, but not most normal tissues, provides an example of a compartmentalized network of cell survival, opening fresh prospects for novel, subcellularly targeted cancer drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Armstrong JS . (2007). Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 151: 1154–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD . (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF . (2002). Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295: 669–671.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2: 469–475.

    Article  CAS  PubMed  Google Scholar 

  • Butcher EC . (2005). Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 4: 461–467.

    Article  CAS  PubMed  Google Scholar 

  • Cechetto JD, Gupta RS . (2000). Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp Cell Res 260: 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Chen LB . (1988). Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4: 155–181.

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Cowen LE, Lindquist S . (2005). Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309: 2185–2189.

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Whitesell L, Rogers AB, Lindquist S . (2007). Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130: 1005–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Carlson N, Takeyama K, Dal Cin P, Shipp M, Letai A . (2007). BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12: 171–185.

    Article  CAS  PubMed  Google Scholar 

  • Drysdale MJ, Brough PA, Massey A, Jensen MR, Schoepfer J . (2006). Targeting Hsp90 for the treatment of cancer. Curr Opin Drug Discov Devel 9: 483–495.

    CAS  PubMed  Google Scholar 

  • Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM et al. (2008). Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 14: 1097–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C et al. (2004). Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol 6: 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Fantin VR, Leder P . (2006). Mitochondriotoxic compounds for cancer therapy. Oncogene 25: 4787–4797.

    Article  CAS  PubMed  Google Scholar 

  • Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO . (2000). The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275: 3305–3312.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Carneado J, Van Gool M, Martos V, Castel S, Prados P, de Mendoza J et al. (2005). Highly efficient, nonpeptidic oligoguanidinium vectors that selectively internalize into mitochondria. J Am Chem Soc 127: 869–874.

    Article  CAS  PubMed  Google Scholar 

  • Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D et al. (2007). Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci 104: 7558–7563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Yamamoto KR . (2002). Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296: 2232–2235.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A et al. (1998). Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392: 821–824.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G . (2004). The pathophysiology of mitochondrial cell death. Science 305: 626–629.

    Article  CAS  PubMed  Google Scholar 

  • Gyurkocza B, Plescia J, Raskett CM, Garlick DS, Lowry PA, Carter BZ et al. (2006). Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors. J Natl Cancer Inst 98: 1068–1077.

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP . (2009). What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46: 821–831.

    Article  CAS  PubMed  Google Scholar 

  • He L, Lemasters JJ . (2002). Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Henchcliffe C, Beal MF . (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4: 600–609.

    Article  CAS  PubMed  Google Scholar 

  • Hua G, Zhang Q, Fan Z . (2007). Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 282: 20553–20560.

    Article  CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH . (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2: 277–288.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs JS, Xu W, Neckers L . (2003). Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW . (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ, Altieri DC . (2007). Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131: 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Kang BH, Plescia J, Song HY, Meli M, Colombo G, Beebe K et al. (2009). Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 119: 454–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L . (2006). Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci USA 103: 11318–11322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427: 461–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolata G . (2009). In long drive to cure cancer, advances have been elusive. The New York Times. April 24 Health Section.

  • Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. (2006). The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  • Leaf C . (2004). Why we’re losing the war on cancer (and how to win it). Fortune 149: 76–97.

    PubMed  Google Scholar 

  • Li R, Boehm AL, Miranda MB, Shangary S, Grandis JR, Johnson DE . (2007). Targeting antiapoptotic Bcl-2 family members with cell-permeable BH3 peptides induces apoptosis signaling and death in head and neck squamous cell carcinoma cells. Neoplasia 9: 801–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKeigan JP, Murphy LO, Blenis J . (2005). Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7: 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S et al. (2004). Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279: 42503–42515.

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J . (2007). Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131: 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Montesano Gesualdi N, Chirico G, Pirozzi G, Costantino E, Landriscina M, Esposito F . (2007). Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10: 342–350.

    Article  CAS  PubMed  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115: 629–640.

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP . (2008). Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777: 1028–1031.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Neckers L . (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8: S55–S61.

    Article  CAS  PubMed  Google Scholar 

  • O’Dwyer ME, Druker BJ . (2000). STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol 1: 207–211.

    Article  PubMed  Google Scholar 

  • Pearl LH, Prodromou C . (2000). Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10: 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M et al. (2005). Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280: 34025–34032.

    Article  CAS  PubMed  Google Scholar 

  • Pilkington GJ, Parker K, Murray SA . (2008). Approaches to mitochondrially mediated cancer therapy. Semin Cancer Biol 18: 226–235.

    Article  CAS  PubMed  Google Scholar 

  • Plescia J, Salz W, Xia F, Pennati M, Zaffaroni N, Daidone MG et al. (2005). Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7: 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Price JT, Quinn JM, Sims NA, Vieusseux J, Waldeck K, Docherty SE et al. (2005). The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line. Cancer Res 65: 4929–4938.

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Olzmann JA, Chin LS, Li L . (2007). PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5: e172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH . (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65–75.

    Article  CAS  PubMed  Google Scholar 

  • Rajasethupathy P, Vayttaden SJ, Bhalla US . (2005). Systems modeling: a pathway to drug discovery. Curr Opin Chem Biol 9: 400–406.

    Article  CAS  PubMed  Google Scholar 

  • Rodina A, Vilenchik M, Moulick K, Aguirre J, Kim J, Chiang A et al. (2007). Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer. Nat Chem Biol 3: 498–507.

    Article  CAS  PubMed  Google Scholar 

  • Ross MF, Filipovska A, Smith RA, Gait MJ, Murphy MP . (2004). Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochem J 383: 457–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyers C . (2004). Targeted cancer therapy. Nature 432: 294–297.

    Article  CAS  PubMed  Google Scholar 

  • Schein PS, Scheffler B . (2006). Barriers to efficient development of cancer therapeutics. Clin Cancer Res 12: 3243–3248.

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J et al. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102: 12005–12010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid D, Baici H, Gehring H, Christen P . (1994). Kinetics of molecular chaperon action. Science 263: 971–973.

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Chiosis G . (2008). Development and application of Hsp90 inhibitors. Drug Discov Today 13: 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Steensma DP . (2009). The ordinary miracle of cancer clinical trials. J Clin Oncol 27: 1737–1739.

    Article  PubMed  Google Scholar 

  • Szeto HH . (2008). Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann NY Acad Sci 1147: 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP . (2006). Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8: 343–375.

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S . (2007). Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12: 835–840.

    Article  CAS  PubMed  Google Scholar 

  • van der Greef J, McBurney RN . (2005). Innovation: rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4: 961–967.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Vogler M, Dinsdale D, Dyer MJS, Cohen GM . (2008). Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16: 360–367.

    Article  PubMed  Google Scholar 

  • Voloboueva LA, Duan M, Ouyang Y, Emery JF, Stoy C, Giffard RG . (2007). Overexpression of mitochondrial Hsp70//Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28: 1009–1016.

    Article  PubMed  Google Scholar 

  • Weinstein IB, Joe AK . (2006). Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3: 448–457.

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Lindquist SL . (2005). HSP90 and the chaperoning of cancer. Nat Rev Cancer 5: 761–772.

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Woodfield K, Ruck A, Brdiczka D, Halestrap AP . (1998). Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336 (Pt 2): 287–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GL, Maroulakou IG, Eldridge J, Liby TL, Sridharan V, Tsichlis PN et al. (2008). VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB J 22: 3264–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Voloboueva LA, Ouyang Y, Emery JF, Giffard RG . (2008). Overexpression of mitochondrial Hsp70//Hsp75 in rat brain protects mitochondria, reduces oxidative stress, and protects from focal ischemia. J Cereb Blood Flow Metab 29: 365–374.

    Article  PubMed  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU . (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Moarefi I, Hartl FU . (2001). Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154: 267–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitlin BD, Zeitlin IJ, Nor JE . (2008). Expanding circle of inhibition: small-molecule inhibitors of Bcl-2 as anticancer cell and antiangiogenic agents. J Clin Oncol 26: 4180–4188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Houry WA . (2007). Molecular interaction network of the Hsp90 chaperone system. Adv Exp Med Biol 594: 27–36.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all the colleagues, whose work could not be cited due to space limitations. This work was supported by National Institutes of Health grants CA78810, CA90917 and CA118005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Altieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Altieri, D. Compartmentalized cancer drug discovery targeting mitochondrial Hsp90 chaperones. Oncogene 28, 3681–3688 (2009). https://doi.org/10.1038/onc.2009.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.227

Keywords

This article is cited by

Search

Quick links