Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells

Abstract

Human melanomas show oncogenic B-Raf mutations, which activate the B-Raf/MKK/ERK cascade. We screened microarrays to identify cellular targets of this pathway, and found that genes upregulated by B-Raf/MKK/ERK showed highest association with cell-cycle regulators, whereas genes downregulated were most highly associated with axon guidance genes, including plexin–semaphorin family members. Plexin B1 was strongly inhibited by mitogen-activated protein kinase signaling in melanoma cells and melanocytes. In primary melanoma cells, plexin B1 blocked tumorigenesis as measured by growth of colonies in soft agar, spheroids in extracellular matrix and xenograft tumors. Tumor suppression depended on residues in the C-terminal domain of plexin B1, which mediate receptor GTPase activating protein activity, and also correlated with AKT inhibition. Interestingly, the inhibitory response to plexin B1 was reduced or absent in cells from a matched metastatic tumor, suggesting that changes occur in metastatic cells which bypass the tumor-suppressor mechanisms. Plexin B1 also inhibited cell migration, but this was seen in metastatic cells and not in matched primary cells. Thus, plexin B1 has tumor-suppressor function in early-stage cells, although suppressing migration in late-stage cells. Our findings suggest that B-Raf/MKK/ERK provides a permissive environment for melanoma genesis by modulating plexin B1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aurandt J, Vikis HG, Gutkind JS, Ahn N, Guan KL . (2002). The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc Natl Acad Sci USA 99: 12085–12090.

    Article  CAS  Google Scholar 

  • Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS . (2004). Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64: 5212–5224.

    Article  CAS  Google Scholar 

  • Basile JR, Castilho RM, Williams VP, Gutkind JS . (2006). Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA 103: 9017–9022.

    Article  CAS  Google Scholar 

  • Basile JR, Gavard J, Gutkind JS . (2007). Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 282: 34888–34895.

    Article  CAS  Google Scholar 

  • Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC et al. (2004). Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114: 1260–1271.

    Article  CAS  Google Scholar 

  • Bloethner S, Chen B, Hemminki K, MĂĽller-Berghaus J, Ugurel S, Schadendorf D et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26: 1224–1232.

    Article  CAS  Google Scholar 

  • Bogenrieder T, Herlyn M . (2002). Cell-surface proteolysis, growth factor activation and intercellular communication in the progression of melanoma. Crit Rev Oncol Hematol 44: 1–15.

    Article  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P . (2004). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573: 83–92.

    Article  CAS  Google Scholar 

  • Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al. (2002). BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62: 6997–7000.

    CAS  PubMed  Google Scholar 

  • Charest PG, Firtel RA . (2007). Big roles for small GTPases in the control of directed cell movement. Biochem J 401: 377–390.

    Article  CAS  Google Scholar 

  • Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S . (2004). Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 23: 5131–5137.

    Article  CAS  Google Scholar 

  • Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM et al. (2005). Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 105: 4321–4329.

    Article  CAS  Google Scholar 

  • Cox AD, Brtva TR, Lowe DG, Der CJ . (1994). R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 9: 3281–3288.

    CAS  PubMed  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Dhomen N, Marais R . (2007). New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17: 31–39.

    Article  CAS  Google Scholar 

  • Dickson BJ . (2001). Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11: 103–110.

    Article  CAS  Google Scholar 

  • Driessens MH, Hu H, Nobes CD, Self A, Jordens I, Goodman CS et al. (2001). Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr Biol 11: 339–344.

    Article  CAS  Google Scholar 

  • Fujisawa H . (2004). Discovery of semaphorin receptors, neuropilin and plexin, and their functions in neural development. J Neurobiol 59: 24–33.

    Article  CAS  Google Scholar 

  • Fukata M, Nakagawa M, Kaibuchi K . (2003). Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15: 590–597.

    Article  CAS  Google Scholar 

  • Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D et al. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4: 720–724.

    Article  CAS  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA . (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202.

    CAS  Google Scholar 

  • Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R et al. (2006). Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19: 290–302.

    Article  CAS  Google Scholar 

  • Hsu MY, Elder DE, Herlyn M . (1999). Melanoma: the Wistar melanoma (WM) cell lines. Human Cell Culture 1: 259–274.

    Article  Google Scholar 

  • Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M . (2006). Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep 7: 704–709.

    Article  CAS  Google Scholar 

  • Johansson P, Pavey S, Hayward N . (2007). Confirmation of a BRAF mutation-associated gene expression signature in melanoma. Pigment Cell Res 20: 216–221.

    Article  CAS  Google Scholar 

  • Keely PJ, Rusyn EV, Cox AD, Parise LV . (1999). R-Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J Cell Biol 145: 1077–1088.

    Article  CAS  Google Scholar 

  • Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L et al. (2004). Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64: 1008–1015.

    Article  CAS  Google Scholar 

  • Koo HM, VanBrocklin M, McWilliams MJ, Leppla SH, Duesbery NS, Woude GF . (2002). Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc Natl Acad Sci USA 99: 3052–3057.

    Article  CAS  Google Scholar 

  • Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J . (1997). R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr Biol 7: 63–70.

    Article  CAS  Google Scholar 

  • Mora N, Rosales R, Rosales C . (2007). R-Ras promotes metastasis of cervical cancer epithelial cells. Cancer Immunol Immunother 56: 535–544.

    Article  CAS  Google Scholar 

  • Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME . (2005). EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol 167: 565–576.

    Article  CAS  Google Scholar 

  • Negishi M, Oinuma I, Katoh H . (2005). Plexins: axon guidance and signal transduction. Cell Mol Life Sci 62: 1363–1371.

    Article  CAS  Google Scholar 

  • Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 65: 2115–2124.

    Article  CAS  Google Scholar 

  • Oinuma I, Ishikawa Y, Katoh H, Negishi M . (2004a). The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305: 862–865.

    Article  CAS  Google Scholar 

  • Oinuma I, Katoh H, Negishi M . (2004b). Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J Neurosci 24: 11473–11480.

    Article  CAS  Google Scholar 

  • Omholt K, Platz A, Kanter L, Ringborg U, Hansson J . (2003). NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res 9: 6483–6488.

    CAS  PubMed  Google Scholar 

  • Osada M, Tolkacheva T, Li W, Chan TO, Tsichlis PN, Saez R et al. (1999). Differential roles of Akt, Rac, and Ral in R-Ras-mediated cellular transformation, adhesion, and survival. Mol Cell Biol 19: 6333–6344.

    Article  CAS  Google Scholar 

  • Pavey S, Johansson P, Packer L, Taylor J, Stark M, Pollock PM et al. (2004). Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23: 4060–4067.

    Article  CAS  Google Scholar 

  • Perrot V, Vazquez-Prado J, Gutkind JS . (2002). Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 277: 43115–43120.

    Article  CAS  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20.

    Article  CAS  Google Scholar 

  • Rincon-Arano H, Rosales R, Mora N, Rodriguez-Castaneda A, Rosales C . (2003). R-Ras promotes tumor growth of cervical epithelial cells. Cancer 97: 575–585.

    Article  CAS  Google Scholar 

  • Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G et al. (2007). Poor outcome in estrogen receptor-positive breast cancers predicted by loss of plexin B1. Clin Cancer Res 13: 1115–1122.

    Article  CAS  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    Article  CAS  Google Scholar 

  • Shields JM, Thomas NE, Cregger M, Berger AJ, Leslie M, Torrice C et al. (2007). Lack of extracellular signal-regulated kinase mitogen-activated protein kinase signaling shows a new type of melanoma. Cancer Res 67: 1502–1512.

    Article  CAS  Google Scholar 

  • Smalley KS, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M . (2006). Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther 5: 1136–1144.

    Article  CAS  Google Scholar 

  • Swiercz JM, Kuner R, Behrens J, Offermanns S . (2002). Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35: 51–63.

    Article  CAS  Google Scholar 

  • Swiercz JM, Worzfeld T, Offermanns S . (2008). ErbB-2 and Met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem 283: 1893–1901.

    Article  CAS  Google Scholar 

  • Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR et al. (2003). TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112: 1116–1124.

    Article  CAS  Google Scholar 

  • Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B et al. (2003). Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63: 8284–8292.

    CAS  PubMed  Google Scholar 

  • Vikis HG, Li W, Guan KL . (2002). The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev 16: 836–845.

    Article  CAS  Google Scholar 

  • Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116: 855–867.

    Article  CAS  Google Scholar 

  • Wong OG, Nitkunan T, Oinuma I, Zhou C, Blanc V, Brown RS et al. (2007). Plexin-B1 mutations in prostate cancer. Proc Natl Acad Sci USA 104: 19040–19045.

    Article  CAS  Google Scholar 

  • Yu Y, Feig LA . (2002). Involvement of R-Ras and Ral GTPases in estrogen-independent proliferation of breast cancer cells. Oncogene 21: 7557–7568.

    Article  CAS  Google Scholar 

  • Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Palmer AA, Zhang XD et al. (2005). Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma. J Clin Pathol 58: 1163–1169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Meenhard Herlyn for providing melanoma cell lines used in this study, and Silvio Gutkind, Kun-liang Guan, Xuedong Liu and Andrey Sorokin for expression plasmids. We also thank Norma Aumen for tumor sectioning, Helen Marshall for microarray analysis and Micah Hamady and Rob Knight for providing access to GO-Getter. This work was supported by NIH awards R01-CA118972 (NGA) and P50-CA058187 (DC), and fellowship awards F32-CA105796 (GMA), ACS-PF-04-152 (CHC) and T32-GM008759 (KLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N G Ahn.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argast, G., Croy, C., Couts, K. et al. Plexin B1 is repressed by oncogenic B-Raf signaling and functions as a tumor suppressor in melanoma cells. Oncogene 28, 2697–2709 (2009). https://doi.org/10.1038/onc.2009.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.133

Keywords

This article is cited by

Search

Quick links