Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity

Abstract

The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MLN51, eIF4AIII and MAGOH-Y14 form a stable complex.
Figure 2: The complex formed by eIF4AIII, MLN51-S and MAGOH-Y14ΔN strongly binds RNA.
Figure 3: Ability of various eIF4AIII and eIF4AI chimeric proteins to form the reconstituted complex.
Figure 4: Effect of site-specific MLN51-S mutations on complex formation.
Figure 5: Protein-RNA cross-linking analysis of the recombinant complex.
Figure 6: The reconstituted complex shows biochemical similarities to the EJC.
Figure 7: Effect of MLN51-S and MAGOH-Y14ΔN on eIF4AIII ATPase activity and complex stability.
Figure 8: Effect of MLN51-S mutations on its in vivo localization.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Mohr, S.E., Dillon, S.T. & Boswell, R.E. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Le Hir, H., Nott, A. & Moore, M.J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28, 215–220 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Degot, S. et al. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 279, 33702–33715 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kataoka, N., Diem, M.D., Kim, V.N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, V.N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan, C.C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Li, C., Lin, R.I., Lai, M.C., Ouyang, P. & Tarn, W.Y. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol. Cell. Biol. 23, 7363–7376 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16, 2778–2791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Lau, C.K., Diem, M.D., Dreyfuss, G. & Van Duyne, G.D. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol. 13, 933–941 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Shi, H. & Xu, R.M. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev. 17, 971–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanner, N.K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Tanner, N.K., Cordin, O., Banroques, J., Doere, M. & Linder, P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Custodio, N. et al. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10, 622–633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Misteli, T. Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J. Cell Sci. 113, 1841–1849 (2000).

    CAS  PubMed  Google Scholar 

  34. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Rogers, G.W., Jr., Richter, N.J., Lima, W.F. & Merrick, W.C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Cordin, O., Tanner, N.K., Doere, M., Linder, P. & Banroques, J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J. 23, 2478–2487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Caruthers, J.M., Johnson, E.R. & McKay, D.B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97, 13080–13085 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oguro, A., Ohtsu, T., Svitkin, Y.V., Sonenberg, N. & Nakamura, Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9, 394–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallego, M.E., Gattoni, R., Stevenin, J., Marie, J. & Expert-Bezancon, A. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J. 16, 1772–1784 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Tange, M.J. Moore, P. Linder and S. Degot for plasmids and J. Stévenin for antibodies to 9G8. We are grateful to A. Dziembowski for technical assistance. We acknowledge our laboratory and A. Expert-Bezancon for helpful advice and discussions and M. Jurica, D. Libri and A. Nott for carefully reading the manuscript. This work was supported in part by the Centre National de la Recherche Scientifique (CNRS), La Ligue Contre le Cancer and Human Frontier Science Program (B.S.) and the Research Ministry (grant ACI–Jeunes chercheurs to H.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Le Hir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Stability of the complex in presence of the eIF4AIII mutant K92A (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballut, L., Marchadier, B., Baguet, A. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 12, 861–869 (2005). https://doi.org/10.1038/nsmb990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing