Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly conserved 6S RNA structure is required for regulation of transcription

Abstract

6S RNA, a highly abundant noncoding RNA, regulates transcription through interaction with RNA polymerase in Escherichia coli. Computer searches identified 6S RNAs widely among γ-proteobacteria. Biochemical approaches were required to identify more divergent 6S RNAs. Two Bacillus subtilis RNAs were found to interact with the housekeeping form of RNA polymerase, thereby establishing them as 6S RNAs. A third B. subtilis RNA was discovered with distinct RNA polymerase–binding activity. Phylogenetic comparison and analysis of mutant RNAs revealed that a conserved secondary structure containing a single-stranded central bulge within a highly double-stranded molecule was essential for 6S RNA function in vivo and in vitro. Reconstitution experiments established the marked specificity of 6S RNA interactions for σ70-RNA polymerase, as well as the ability of 6S RNA to directly inhibit transcription. These data highlight the critical importance of structural characteristics for 6S RNA activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of total and immunoprecipitated RNAs.
Figure 2: Selected secondary structure predictions for 6S RNAs from diverse bacteria.
Figure 3: Analysis of mutant 6S RNA activity by coimmunoprecipitation of σ70 with core RNAP.
Figure 4: Examination of 6S RNA and mutants for inhibition of transcription in vivo and in vitro.
Figure 5: In vitro reconstitution to examine specificity of 6S RNA interactions with various forms of RNAP.
Figure 6: Analysis of 6S and mutants for Eσ70-binding activity.

Similar content being viewed by others

References

  1. Brownlee, G.G. Sequence of 6S RNA of E. coli. Nat. New Biol. 22, 147–149 (1971).

    Article  Google Scholar 

  2. Wassarman, K.M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article  CAS  Google Scholar 

  3. Gruber, T.M. & Gross, C.A. Multiple σ subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).

    Article  CAS  Google Scholar 

  4. Trotochaud, A.E. & Wassarman, K.M. 6S RNA function enhances long-term cell survival. J. Bacteriol. 186, 4978–4985 (2004).

    Article  CAS  Google Scholar 

  5. Suzuma, S. et al. Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiology 148, 2591–2598 (2002).

    Article  CAS  Google Scholar 

  6. Ando, Y., Asari, S., Suzuma, S., Yamne, K. & Nakamura, K. Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett. 207, 29–33 (2002).

    CAS  PubMed  Google Scholar 

  7. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  8. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

  9. Krakow, J.S. & von der Helm, K. Azotobacter RNA polymerase transitions and the release of σ. Cold Spring Harbor Symp. Quant. Biol. 35, 73–83 (1970).

    Article  CAS  Google Scholar 

  10. Spassky, A., Busby, S.J.W., Danchin, A. & Buc, H. On the binding of tRNA to Escherichia coli RNA polymerase. Eur. J. Biochem. 99, 187–201 (1979).

    Article  CAS  Google Scholar 

  11. Artsimovitch, I., Svetlov, V., Anthony, L., Burgess, R.R. & Landick, R. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J. Bacteriol. 182, 6027–6035 (2000).

    Article  CAS  Google Scholar 

  12. Marchler-Bauer A. & Bryant, S.H. CD-Search: protein domain annotations on the fly. Nucl. Acids Res. 32, W327–W331 (2004).

    Article  CAS  Google Scholar 

  13. Hengge-Aronis, R. Stationary phase gene regulation: what makes an Escherichia coli promoter σS-selective? Curr. Opin. Microbiol. 5, 591–595 (2002).

    Article  CAS  Google Scholar 

  14. Hsu, L.M., Zagorski, J., Wang, A. & Fournier, M.J. Escherichia coli 6S RNA gene is part of a dual-function transcription unit. J. Bacteriol. 161, 1162–1170 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffin, B.E. & Baillie, D.L. Precursors of stable RNA accumulated in a mutant of E. coli. FEBS Lett. 34, 273–279 (1973).

    Article  CAS  Google Scholar 

  16. Li, Z., Pandit, S. & Deutscher, M.P. 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 2856–2861 (1998).

    Article  CAS  Google Scholar 

  17. Gottesman, S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58, 303–328 (2004).

    Article  CAS  Google Scholar 

  18. Hilbert, D.W. & Piggot, P.J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004).

    Article  CAS  Google Scholar 

  19. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    Article  CAS  Google Scholar 

  20. Nguyen, V.T., Kiss, T., Michels, A.A. & Bensaude, O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414, 322–325 (2001).

    Article  CAS  Google Scholar 

  21. Allen, T.A., Von Kaenel, S., Goodrich, J.A. & Kugel, J.F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11, 816–821 (2004).

    Article  CAS  Google Scholar 

  22. Espinoza, C.A., Allen, T.A., Hieb, A.R., Kugel, J.F. & Goodrich, J.A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822–829 (2004).

    Article  CAS  Google Scholar 

  23. Silhavy, T.J, Berman, M.L. & Enquist, L.W. Experiments With Gene Fusions (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1984).

    Google Scholar 

  24. Stibitz, S. Mutations in the bvgA gene of Bordetella pertussis that differentially affect regulation of virulence determinants. J. Bacteriol. 176, 5615–5621 (1994).

    Article  CAS  Google Scholar 

  25. Zhang, A., Wassarman, K.M, Ortega, J., Steven, A.C. & Storz, G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9, 11–22 (2002).

    Article  Google Scholar 

  26. Altuvia S., Weinstein-Fischer, D., Zhang, A., Postow, L. & Storz, G. A small stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90, 43–53 (1997).

    Article  CAS  Google Scholar 

  27. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D. A basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  28. Montzka, K.A. & Steitz, J.A. Additional low-abundance human small nuclear ribonucleoproteins: U11, U12, etc. Proc. Natl. Acad. Sci. USA 85, 8885–8889 (1988).

    Article  CAS  Google Scholar 

  29. Sukhodolets, M.V. & Jin, D.J. RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2/SNF2. J. Biol. Chem. 273, 7018–7023 (1998).

    Article  CAS  Google Scholar 

  30. Breyer, M.J., Thompson, N.E. & Burgess, R.R. Identification of the epitope for a highly cross-reactive monoclonal antibody on the major σ factor of bacterial RNA polymerase. J. Bacteriol. 179, 1404–1408 (1997).

    Article  CAS  Google Scholar 

  31. Anthony, L.C., Foley, K.M., Thompson, N.E. & Burgess, R.R. Expression, purification of, and monoclonal antibodies to σ factors from Escherichia coli. Methods Enzymol. 370, 181–192 (2003).

    Article  CAS  Google Scholar 

  32. Hager, D.A., Jin, D.J. & Burgess, R.R. Use of Mono Q high-resolution ion-exchange chromotography to obtain highly pure and active Escherichia coli RNA polymerase. Biochemistry 29, 7890–7894 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Storz for supporting experiments conducted by K.M.W. at the US National Institutes of Health (NIH). We thank S. Stibitz for providing B. pertussis cells and the Bacillus Genetic Stock Center for B. subtilis strains; R. Burgess, D. Jin and C. Price for antibodies; and L. Anthony, R. Burgess and R. Landick for RNAP preparations. We thank R. Burgess, R. Gourse, R. Landick and G. Storz for helpful discussions. This work was supported by the NIH (GM67955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M Wassarman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment. (PDF 345 kb)

Supplementary Fig. 2

Secondary structure mapping. (PDF 1802 kb)

Supplementary Table 1

Oligonucleotide sequences. (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotochaud, A., Wassarman, K. A highly conserved 6S RNA structure is required for regulation of transcription. Nat Struct Mol Biol 12, 313–319 (2005). https://doi.org/10.1038/nsmb917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing