Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time assembly landscape of bacterial 30S translation initiation complex

Abstract

Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S–IF2–IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNAfMet is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translation initiation in bacteria.
Figure 2: Recruitment of IF1 to the 30S PIC.
Figure 3: Recruitment of IF2 to the 30S PIC.
Figure 4: Recruitment of IF3 to the 30S PIC.
Figure 5: Recruitment of IF3 to ribosome recycling complexes.
Figure 6: mRNA recruitment.
Figure 7: Assembly landscape of 30S PIC formation.

Similar content being viewed by others

References

  1. Gualerzi, C.O. et al. Initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harb. Symp. Quant. Biol. 66, 363–376 (2001).

    Article  CAS  Google Scholar 

  2. Laursen, B.S., Sorensen, H.P., Mortensen, K.K. & Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).

    Article  CAS  Google Scholar 

  3. Simonetti, A. et al. A structural view of translation initiation in bacteria. Cell. Mol. Life Sci. 66, 423–436 (2009).

    Article  CAS  Google Scholar 

  4. Milón, P. et al. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep. 11, 312–316 (2010).

    Article  Google Scholar 

  5. Antoun, A., Pavlov, M.Y., Lovmar, M. & Ehrenberg, M. How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J. 25, 2539–2550 (2006).

    Article  CAS  Google Scholar 

  6. Grigoriadou, C., Marzi, S., Kirillov, S., Gualerzi, C.O. & Cooperman, B.S. A quantitative kinetic scheme for 70 S translation initiation complex formation. J. Mol. Biol. 373, 562–572 (2007).

    Article  CAS  Google Scholar 

  7. Milón, P., Konevega, A.L., Gualerzi, C.O. & Rodnina, M.V. Kinetic checkpoint at a late step in translation initiation. Mol. Cell 30, 712–720 (2008).

    Article  Google Scholar 

  8. Marshall, R.A., Aitken, C.E. & Puglisi, J.D. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Mol. Cell 35, 37–47 (2009).

    Article  CAS  Google Scholar 

  9. Tomsic, J. et al. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 19, 2127–2136 (2000).

    Article  CAS  Google Scholar 

  10. Studer, S.M. & Joseph, S. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol. Cell 22, 105–115 (2006).

    Article  CAS  Google Scholar 

  11. Calogero, R.A., Pon, C.L., Canonaco, M.A. & Gualerzi, C.O. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 85, 6427–6431 (1988).

    Article  CAS  Google Scholar 

  12. Grigoriadou, C., Marzi, S., Pan, D., Gualerzi, C.O. & Cooperman, B.S. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J. Mol. Biol. 373, 551–561 (2007).

    Article  CAS  Google Scholar 

  13. La Teana, A., Gualerzi, C.O. & Brimacombe, R. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1, 772–782 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Milón, P. et al. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol. 430, 1–30 (2007).

    Article  Google Scholar 

  15. Julián, P. et al. The cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 9, e1001095 (2011).

    Article  Google Scholar 

  16. Celano, B., Pawlik, R.T. & Gualerzi, C.O. Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. Eur. J. Biochem. 178, 351–355 (1988).

    Article  CAS  Google Scholar 

  17. Zucker, F.H. & Hershey, J.W. Binding of Escherichia coli protein synthesis initiation factor IF1 to 30S ribosomal subunits measured by fluorescence polarization. Biochemistry 25, 3682–3690 (1986).

    Article  CAS  Google Scholar 

  18. Misselwitz, R. et al. The fMet-tRNA binding domain of translational initiation factor IF2: role and environment of its two Cys residues. FEBS Lett. 459, 332–336 (1999).

    Article  CAS  Google Scholar 

  19. Weiel, J. & Hershey, J.W. The binding of fluorescein-labeled protein synthesis initiation factor 2 to Escherichia coli 30 S ribosomal subunits determined by fluorescence polarization. J. Biol. Chem. 257, 1215–1220 (1982).

    CAS  PubMed  Google Scholar 

  20. Petrelli, D. et al. Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J. 20, 4560–4569 (2001).

    Article  CAS  Google Scholar 

  21. Karimi, R., Pavlov, M.Y., Buckingham, R.H. & Ehrenberg, M. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3, 601–609 (1999).

    Article  CAS  Google Scholar 

  22. Peske, F., Rodnina, M.V. & Wintermeyer, W. Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol. Cell 18, 403–412 (2005).

    Article  CAS  Google Scholar 

  23. Antoun, A., Pavlov, M.Y., Lovmar, M. & Ehrenberg, M. How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. Mol. Cell 23, 183–193 (2006).

    Article  CAS  Google Scholar 

  24. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  25. Bremer, H. & Dennis, P.P. Modulation of chemical composition and other parameters of the cell by growth rate. in Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (ed. Neidherdt, F.C.) 1527–1542 (American Society for Microbiology, Washington, DC, 1987).

  26. Passalacqua, K.D. et al. Structure and complexity of a bacterial transcriptome. J. Bacteriol. 191, 3203–3211 (2009).

    Article  CAS  Google Scholar 

  27. Yusupova, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394 (2006).

    Article  CAS  Google Scholar 

  28. Kudla, G., Murray, A.W., Tollervey, D. & Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  Google Scholar 

  29. Carter, A.P. et al. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498–501 (2001).

    Article  CAS  Google Scholar 

  30. Qin, D. & Fredrick, K. Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol. Microbiol. 71, 1239–1249 (2009).

    Article  CAS  Google Scholar 

  31. Kapralou, S. et al. Translation initiation factor IF1 of Bacillus stearothermophilus and Thermus thermophilus substitute for Escherichia coli IF1 in vivo and in vitro without a direct IF1–IF2 interaction. Mol. Microbiol. 70, 1368–1377 (2008).

    Article  CAS  Google Scholar 

  32. Caserta, E. et al. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J. Mol. Biol. 362, 787–799 (2006).

    Article  CAS  Google Scholar 

  33. Belotserkovsky, J.M., Dabbs, E.R. & Isaksson, L.A. Mutations in 16S rRNA that suppress cold-sensitive initiation factor 1 affect ribosomal subunit association. FEBS J. 278, 3508–3517 (2011).

    Article  CAS  Google Scholar 

  34. Qin, D., Abdi, N.M. & Fredrick, K. Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA 13, 2348–2355 (2007).

    Article  CAS  Google Scholar 

  35. Surkov, S., Nilsson, H., Rasmussen, L.C., Sperling-Petersen, H.U. & Isaksson, L.A. Translation initiation region dependency of translation initiation in Escherichia coli by IF1 and kasugamycin. FEBS J. 277, 2428–2439 (2010).

    Article  CAS  Google Scholar 

  36. McCarthy, J.E. & Gualerzi, C. Translational control of prokaryotic gene expression. Trends Genet. 6, 78–85 (1990).

    Article  CAS  Google Scholar 

  37. Marzi, S. et al. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019–1031 (2007).

    Article  CAS  Google Scholar 

  38. Rodnina, M.V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl. Acad. Sci. USA 92, 1945–1949 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Wintermeyer for critically reading and shortening the manuscript, C. Kothe for doing some stopped-flow experiments and O. Geintzer, S. Kappler, C. Kothe and T. Wiles for expert technical assistance. We also thank the participants of the methods course on transient kinetics of the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences for doing some stopped-flow experiments. This work was supported by grants of the Deutsche Forschungsgemeinschaft (M.V.R.) and Italian Ministero dell′Instruzione, dell′Universitá e della Ricerca (C.O.G.).

Author information

Authors and Affiliations

Authors

Contributions

P.M., C.O.G. and M.V.R. conceived the research. P.M. and M.V.R. designed the experiments and analyzed the data. P.M., C.M. and L.F. prepared materials and conducted experiments. P.M., C.O.G. and M.V.R. wrote the paper.

Corresponding author

Correspondence to Marina V Rodnina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milón, P., Maracci, C., Filonava, L. et al. Real-time assembly landscape of bacterial 30S translation initiation complex. Nat Struct Mol Biol 19, 609–615 (2012). https://doi.org/10.1038/nsmb.2285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing