Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Configuration of the two kinesin motor domains during ATP hydrolysis

Abstract

To understand the mechanism of kinesin movement we have investigated the relative configuration of the two kinesin motor domains during ATP hydrolysis using fluorescence polarization microscopy of ensemble and single molecules. We found that: (i) in nucleotide states that induce strong microtubule binding, both motor domains are bound to the microtubule with similar orientations; (ii) this orientation is maintained during processive motion in the presence of ATP; (iii) the neck-linker region of the motor domain has distinct configurations for each nucleotide condition tested. Our results fit well with a hand-over-hand type movement mechanism and suggest how the ATPase cycle in the two motor domains is coordinated. We propose that the motor neck-linker domain configuration controls ADP release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probe location and orientation.
Figure 2: Fluorescence polarization anisotropy of axonemal microtubules decorated with many kinesin molecules.
Figure 3: Models for kinesin dimer bound to microtubules.
Figure 4: Fluorescence polarization of single kinesin molecules moving processively.
Figure 5: Proposed model for kinesin processive translocation.

Similar content being viewed by others

References

  1. Goldstein, L.S.B. & Philp, A.V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  Google Scholar 

  2. Howard, J., Hudspeth, A.J. & Vale, R.D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  Google Scholar 

  3. Hackney, D.D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl. Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  Google Scholar 

  4. Kawaguchi, K. & Ishiwata, S. Nucleotide-dependent single- to double-headed binding of kinesin. Science 291, 667–669 (2001).

    Article  CAS  Google Scholar 

  5. Hirose, K., Lockhart, A., Cross, R.A. & Amos, L.A. Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA 93, 9539–9544 (1996).

    Article  CAS  Google Scholar 

  6. Arnal, I., Metoz, F., DeBonis, S. & Wade, R.H. Three-dimensional structure of functional motor proteins on microtubules. Curr. Biol. 6, 1265–1270 (1996).

    Article  CAS  Google Scholar 

  7. Hoenger, A. et al. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with X-ray structure and implications for motility. J. Cell Biol. 141, 419–430 (1998).

    Article  CAS  Google Scholar 

  8. Peterman, E.J., Sosa, H., Goldstein, L.S. & Moerner, W.E. Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys. J. 81, 2851–2863 (2001).

    Article  CAS  Google Scholar 

  9. Sosa, H., Peterman, E.J., Moerner, W.E. & Goldstein, L.S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 8, 540–544 (2001).

    Article  CAS  Google Scholar 

  10. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  11. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).

    Article  CAS  Google Scholar 

  12. Crevel, I.M., Lockhart, A. & Cross, R.A. Weak and strong states of kinesin and ncd. J. Mol. Biol. 257, 66–76 (1996).

    Article  CAS  Google Scholar 

  13. Sosa, H. et al. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997).

    Article  CAS  Google Scholar 

  14. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  15. Sack, S. et al. X-ray structure of motor and neck domains from rat brain kinesin. Biochemistry 36, 16155–16165 (1997).

    Article  CAS  Google Scholar 

  16. Kozielski, F. et al. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–994 (1997).

    Article  CAS  Google Scholar 

  17. Hua, W., Young, E.C., Fleming, M.L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  Google Scholar 

  18. Coy, D.L., Wagenbach, M. & Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999).

    Article  CAS  Google Scholar 

  19. Schnitzer, M.J. & Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  Google Scholar 

  20. Ma, Y.Z. & Taylor, E.W. Interacting head mechanism of microtubule-kinesin ATPase. J. Biol. Chem. 272, 724–730 (1997).

    Article  CAS  Google Scholar 

  21. Gilbert, S.P., Moyer, M.L. & Johnson, K.A. Alternating site mechanism of the kinesin ATPase. Biochemistry 37, 800–813 (1998).

    Article  Google Scholar 

  22. Schief, W.R. & Howard, J. Conformational changes during kinesin motility. Curr. Opin. Cell Biol. 13, 19–28 (2001).

    Article  CAS  Google Scholar 

  23. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  24. Jiang, W., Stock, M.F., Li, X. & Hackney, D.D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. Biochemistry 37, 5288–5295 (1997).

    Google Scholar 

  25. Gibbons, I.R. & Fronk, E. A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. J. Biol. Chem. 254, 187–196 (1979).

    CAS  PubMed  Google Scholar 

  26. Pierce, D.W. & Vale, R.D. Assaying processive movement of kinesin by fluorescence microscopy. Methods Enzymol. 298, 154–171 (1998).

    Article  CAS  Google Scholar 

  27. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Kluwer Academic, Plenum Publishers, New York, 1999).

    Book  Google Scholar 

  28. Corrie, J.E.T. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Rogers, D. Sharp, D. Buster and M. Akabas for discussions and critical reading of the manuscript, H. Deng for mass spectrometry analysis and E. Peterman for experimental advice and discussions. This project was supported by a US National Institutes of Health grant to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Sosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asenjo, A., Krohn, N. & Sosa, H. Configuration of the two kinesin motor domains during ATP hydrolysis. Nat Struct Mol Biol 10, 836–842 (2003). https://doi.org/10.1038/nsb984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing