Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment

Abstract

The nature of the supramolecular complex between fibrillar collagen and collagen-binding proteins (CBPs) has hindered detailed X-ray and NMR analyses of the ligand-recognition mechanism at atomic resolution because of the lack of appropriate approaches for studying large heterogeneous supramolecular complexes. Recently, we proposed an NMR method, termed transferred cross-saturation (TCS), that enables the rigorous identification of contact residues in a huge protein complex. Here we used TCS to study the supramolecular complex between the A3 domain of von Willebrand factor and fibrillar collagen, which allowed the successful determination of the ligand-binding site of the A3 domain. The binding site of the A3 domain was located at its hydrophobic 'front' surface and was completely different from that of the I domain from the a2 subunit of integrin (α2-I domain), which was reported to be the hydrophilic 'top' surface of α2-I, although the A3 domain and the α2-I domain share a similar fold and possess the identical function of collagen binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview and results of TCS experiments.
Figure 2: Mapping of the affected residues in the TCS experiments on the A3 domain and the results of the mutational experiments.
Figure 3: Surface representation of the binding trenches of the A3 domain.
Figure 4: Comparison of the collagen-binding sites between the A3 domain and the α2-I domain.

Similar content being viewed by others

References

  1. Kadler, K.E., Holmes, D.F., Trotter, J.A. & Chapman, J.A. Collagen fibril formation. Biochem. J. 316, 1–11 (1996).

    Article  CAS  Google Scholar 

  2. Juliano, R.L. & Haskill, S. Signal transduction from the extracellular matrix. J. Cell. Biol. 120, 577–585 (1993).

    Article  CAS  Google Scholar 

  3. Foster, T.J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    Article  CAS  Google Scholar 

  4. Colombatti, A. & Bonaldo, P. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77, 2305–2315 (1991).

    CAS  PubMed  Google Scholar 

  5. Perkins, S.J. et al. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. J. Mol. Biol. 238, 104–119 (1994).

    Article  CAS  Google Scholar 

  6. Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J. & Liddington, R.C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).

    Article  CAS  Google Scholar 

  7. Dickeson, S.K. & Santoro, S.A. Ligand recognition by the I domain-containing integrins. Cell. Mol. Life Sci. 54, 556–566 (1998).

    Article  CAS  Google Scholar 

  8. Ruggeri, Z.M. von Willebrand factor. J. Clin. Invest. 99, 559–564 (1997).

    Article  CAS  Google Scholar 

  9. Cruz, M.A., Yuan, H., Lee, J.R., Wise, R.J. & Handin, R.I. Interaction of the von Willebrand factor (vWF) with collagen. J. Biol. Chem. 270, 10822–10827 (1995).

    Article  CAS  Google Scholar 

  10. Lankhof, H. et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb. Haemost. 75, 950–958 (1996).

    CAS  PubMed  Google Scholar 

  11. Bienkowska, J., Cruz, M., Atiemo, A., Handin, R. & Liddington, R. The von Willebrand factor A3 domain does not contain a metal ion-dependent adhesion site motif. J. Biol. Chem. 272, 25162–25167 (1997).

    Article  CAS  Google Scholar 

  12. Huizinga, E.G., van der Plas, R.M., Kroon, J., Sixma, J.J. & Gros, P. Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure 5, 1147–1156 (1997).

    Article  CAS  Google Scholar 

  13. van der Plas, R.M. et al. Binding of von Willebrand factor to collagen type III: role of specific amino acids in the collagen binding domain of vWF and effects of neighboring domains. Thromb. Haemost. 84, 1005–1011 (2000).

    Article  CAS  Google Scholar 

  14. Romijn, R.A. et al. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J. Biol. Chem. 276, 9985–9991 (2001).

    Article  CAS  Google Scholar 

  15. Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. A novel NMR method for determining the interfaces of large protein–protein complexes. Nat. Struct. Biol. 7, 220–223 (2000).

    Article  CAS  Google Scholar 

  16. Nakanishi, T. et al. Determination of the interface of a large protein complex by transferred cross-saturation measurements. J. Mol. Biol. 318, 245–249 (2002).

    Article  CAS  Google Scholar 

  17. Jayalakshmi, V. & Krishna, N.R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J. Magn. Reson. 155, 106–118 (2002).

    Article  CAS  Google Scholar 

  18. Nishida, N. et al. Backbone 1H, 13C, 15N resonance assignments of the von Willebrand factor A3 domain. J. Biomol. NMR in the press (2002).

  19. Ribba, A.S. et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (vWF) in two related patients leads to a defective binding of VWF to collagen. Thromb. Haemost. 86, 848–854 (2001).

    Article  CAS  Google Scholar 

  20. Verkleij, M.W. et al. Adhesive domains in the collagen III fragment α1(III)CB4 that support α2β1- and von Willebrand factor–mediated platelet adhesion under flow conditions. Thromb. Haemost. 82, 1137–1144 (1999).

    Article  CAS  Google Scholar 

  21. Knight, C.G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000).

    Article  CAS  Google Scholar 

  22. Chen, J.M., Kung, C.E., Feairheller, S.H. & Brown, E.M. An energetic evaluation of a 'Smith' collagen microfibril model. J. Protein Chem. 10, 535–552 (1991).

    Article  CAS  Google Scholar 

  23. Tuckwell, D. Evolution of von Willebrand factor A (VWA) domains. Biochem. Soc. Trans. 27, 835–840 (1999).

    Article  CAS  Google Scholar 

  24. Clore, G.M. & Gronenborn, A.M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).

    Article  CAS  Google Scholar 

  25. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  26. Kraulis, P.J. ANSIG: a program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics. J. Mol. Biol. 184, 627–633 (1989).

    Google Scholar 

  27. Mori, S. et al. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delay using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B 108, 94–98 (1995).

    Article  CAS  Google Scholar 

  28. Kupce, E. & Wagner, G. Wideband homonuclear decoupling in protein spectra. J. Magn. Reson. B 109, 329–333 (1995).

    Article  CAS  Google Scholar 

  29. Sasaki, T. et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem. 272, 9237–9243 (1997).

    Article  CAS  Google Scholar 

  30. Palma, P.N., Krippahl, L., Wampler, J.E. & Moura, J.J. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 39, 372–384 (2000).

    Article  CAS  Google Scholar 

  31. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 924–950 (1991).

    Article  Google Scholar 

  32. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.S. thanks G. Wagner and M. Ikura for useful discussions. This work was supported by a grant from the Japan New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichio Shimada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, N., Sumikawa, H., Sakakura, M. et al. Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat Struct Mol Biol 10, 53–58 (2003). https://doi.org/10.1038/nsb876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing