Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Ca2+-free GLA domain sheds light on membrane binding of blood coagulation proteins

A Corrigendum to this article was published on 01 January 1996

Abstract

Reversible membrane binding of γ-carboxyglutamic acid (Gla)-containing coagulation factors requires Ca2+-binding to 10–12 Gla residues. Here we describe the solution structure of the Ca2+-free Gla-EGF domain pair of factor X which reveals a striking difference between the Ca2+-free and Ca2+-loaded forms. In the Ca2+-free form Gla residues are exposed to solvent and Phe 4, Leu 5 and Val 8 form a hydrophobic cluster in the interior of the domain. In the Ca2+-loaded form Gla residues ligate Ca22+ in the core of the domain pushing the side-chains of the three hydrophobic residues into the solvent. We propose that the Ca2+-induced exposure of hydrophobic side chains is crucial for membrane binding of Gla-containing coagulation proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Furie, B. & Furie, B.C. The molecular basis of blood coagulation. Cell 53, 505–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Mann, K.G., Nesheim, M.E., Church, W.R., Haley, P. & Krishnaswamy, S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76, 1–16 (1990).

    CAS  PubMed  Google Scholar 

  3. Davie, E.W., Fujikawa, K. & Kisiel, W. The coagulation cascade: Initiation, maintenance and regulation. Biochemistry 30, 10363–10367 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Nelsestuen, G.L. & Suttie, J.W. Mode of action of vitamin K. Calcium binding properties of bovine prothrombin. Biochemistry 11, 4961–4964 (1972).

    Article  CAS  PubMed  Google Scholar 

  5. Stenflo, J. & Ganroth, P.O. Binding of Ca2+ to normal and dicoumarol-induced prothrombin. Biochem. biophys. res. Commun. 50, 98–104 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Henriksen, R.A. & Jackson, C.M. Cooperative calcium binding by the phospholipid binding region of bovine prothrombin: A requirement for intact disulphide bridges. Arc. Biochem. Biophys. 170, 149–159 (1975).

    Article  CAS  Google Scholar 

  7. Bajaj, S.P., Butkowski, R.J. & Mann, K.G. Prothrombin fragments: Ca2+binding and activation kinetics. biol. Chem. 250, 2150–2156 (1975).

    CAS  Google Scholar 

  8. Stenflo, J. & Suttie, J.W., K-dependent formation of γ-carboxyglutamic acid. A. Rev. Biochem. 46, 157–172 (1977).

    Article  CAS  Google Scholar 

  9. Suttie, J.W., Vitamin K-dependent carboxylase. A. Rev. Biochem. 54 459–477 (1985).

    Article  CAS  Google Scholar 

  10. Schwalbe, R.A., Ryans, J., Stern, D.M., Kisiel, W., Dahlbäck, B. & Nelsestuen, G.L. Protein structural requirements and properties of membrane binding by γ-carboxyglutamic acid-containing plasma proteins and peptides. J. biol. Chem. 264, 20288–20296 (1989).

    CAS  PubMed  Google Scholar 

  11. Soriano-Garcia, M., Padmanabhan, K., deVos, A.M. & Tulinsky, A. The Ca2+ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31, 2554–2566 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Park, C.H. & Tulinsky, A. Three-dimensional structure of the kringle sequence: Structure of prothrombin fragment 1. Biochemistry 25 3977–3982 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Tulinsky, A., Park, C.H. & Skrzypczak-Jakun, E. Structure of prothrombin fragment 1 refined at 2.8 Å resolution. J. molec. Biol. 202, 885–901 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Persson, E. et al. Calcium binding to the isolated β-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J. biol. Chem. 264 16897–16904 (1989).

    CAS  PubMed  Google Scholar 

  15. Persson, E., Björk, I. & Stenflo, J. Protein structural requirements for Ca2+ binding to the light chain of factor X. Studies using isolated intact fragments containing the γ-carboxyglutamic acid region and/or the epidermal growth factor region. J. biol. Chem. 266, 2444–2452 (1991).

    CAS  PubMed  Google Scholar 

  16. Ullner, M. et al. Three-dimensional structure of the apo form of the N-terminal EGF-like module of blood coagulation factor X as determined by NMR spectroscopy and simulated folding. Biochemistry 31, 5974–5983 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Selander-Sunnerhagen, M. et al. How an epidermal growth factor (EGF)-like domain binds calcium. J. biol. Chem. 267, 19642–19649 (1992).

    CAS  PubMed  Google Scholar 

  18. Linse, S., Teleman, O. & Drakenberg, T. Ca2+-binding to Calbindin D9k strongly affects backbone dynamics: Measurements of exchange rates of individual amide protons using 1H NMR. Biochemistry 29, 5925–5934 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Valcarce, C. et al. Calcium affinity of the amino-terminal epidermal growth factor-like module of factor X. Effect of the gamma-carboxyglutamic acid-containing module. J. biol. Chem. 268 26673–26678 (1993).

    CAS  PubMed  Google Scholar 

  20. Johnson, M.S., Overington, J.P. & Blundell, T.L. Alignment and searching for common protein folds using a data bank of structural templates. J. molec. Biol. 231, 735–752 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, M.S. & Overington, J.P. A structural basis for sequence comparisons: An evaluation of scoring methodologies. J. molec. Biol. 233 716–738 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ratcliffe, J.V., Furie, B. & Furie, B.C. The importance of specific γ-carboxy-glutamic acid residues in prothrombin. J. biol. Chem. 268, 24339–24345 (1993).

    CAS  PubMed  Google Scholar 

  23. Zhang, L., Jhingan, A. & Castellino, F.J. Role of individual γ-carboxy glutamic acid residues of activated human protein C in defining its in vitroanticoagulant activity. Blood 80, 942–952 (1992).

    CAS  PubMed  Google Scholar 

  24. Zhang, L. & Castellino, F.J. The binding energy of human coagulation protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the γ-carboxy glutamic acid domain. J. biol. Chem. 269, 3590–3595 (1994).

    CAS  PubMed  Google Scholar 

  25. Govers-Riemslag, J.W.P., Janssen, M.P., Zwaal, R.F.A. & Rosing, J. Prothrombin activation on dioeoylphosphatidylcholine membranes. E. J. Biochem. 220, 131–138 (1994).

    Article  CAS  Google Scholar 

  26. Resnick, R.M. & Nelsestuen, G.L. Prothrombin-membrane interaction. Effects of ionic strength, pH and temperature. Biochemistry 19,3028–3033 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Concha, N.O., Head, J.F., Kaetzel, M.A., Dedman, J.R. & Seaton, B., Rat Annexin V crystal structure: Ca2+-induced conformational changes. Science 261, 1321–1324 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Meers, P. & Mealy, I. Relationship between Annexin V tryptophan exposure, calcium and phospholipid binding. Biochemistry 32, 5411–5418 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Zozulya, S. & Stryer, L. Calcium-myristoyl protein switch. Proc. natn. Acad. Sci. U.S.A. 89, 11569–11573 (1992).

    Article  CAS  Google Scholar 

  30. Dizhoor, A.M. et al. Role of the acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science 259, 829–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Clore, G.M., Brünger, A.T., Karplus, M. & Gronenborn, A.M. Application of molecular dynamics with interproton distance restraints to three-dimensional protein structure determination. J. molec. Biol. 191, 523–551 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. comp. Chem. 4, 187–191 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunnerhagen, M., Forsén, S., Hoffrén, AM. et al. Structure of the Ca2+-free GLA domain sheds light on membrane binding of blood coagulation proteins. Nat Struct Mol Biol 2, 504–509 (1995). https://doi.org/10.1038/nsb0695-504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-504

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing