Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What can molecular pathology contribute to the management of renal cell carcinoma?

Abstract

The incidence of renal cell carcinoma (RCC) is increasing and outcomes remain poor. One-third of patients with localized disease will relapse, and 5-year survival for patients with metastatic disease is less than 10%. No molecular test is currently available to identify which patients who have undergone 'curative' surgery will relapse, and which patients will respond to targeted therapy. Some well characterized biochemical pathways, such as those associated with von Hippel–Lindau disease, are aberrantly regulated in RCC and are associated with histological subtype, but the understanding of these pathways contributes little to the clinical management of patients with RCC. Gene expression and sequencing studies have increased our understanding of the genetic basis of the disease but have failed to establish any unified classification to improve molecular stratification or to predict which patients are likely to relapse or respond to targeted therapy. Instead, they have served to highlight that RCC is heterogeneous at histological, morphological, and molecular levels, and that novel approaches are required to resolve the complexity of RCC prognostication and prediction of treatment response.

Key Points

  • Despite the prominence of molecular-targeted therapy in renal cell carcinoma (RCC), and the wealth of information on pathobiology, there are no molecular pathology tests to guide disease prognosis or predict treatment response

  • Both candidate and systematic approaches to selecting potential prognostic and predictive biomarkers in RCC from genetic and proteomic studies have failed

  • Generic and RCC-specific methodological, biological and pathological factors can account for the failure of previous studies to identify robust biomarkers in RCC

  • There is a high level of molecular and pathological heterogeneity in RCC, which has not been taken into account by existing genetic and proteomic approaches

  • More-detailed heterogeneity mapping is required to establish the importance of heterogeneity in prognosis and prediction of therapeutic response

  • Future predictive assays in RCC will need to be multiparametric, and incorporate novel, high-throughput, highly quantifiable technologies to account for the complexity of the pathway networks involved

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intratumoral heterogeneity of carbonic anhydrase IX (CAIX) expression (red signal) in renal cell carcinoma, by automated quantitative analysis.
Figure 2: Hematoxylin and eosin staining of a ccRCC nephrectomy sample illustrating intratumoral heterogeneity.
Figure 3: Development of the next generation of diagnostic test.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. CancerResearchUK. Kidney cancer statistics [online], (2011).

  3. Linehan, W. M. et al. Molecular diagnosis and therapy of kidney cancer. Annu. Rev. Med. 61, 329–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jayson, M. & Sanders, H. Increased incidence of serendipitously discovered renal cell carcinoma. Urology 51, 203–205 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Hollingsworth, J. M., Miller, D. C., Daignault, S. & Hollenbeck, B. K. Rising incidence of small renal masses: a need to reassess treatment effect. J. Natl Cancer Inst. 98, 1331–1334 (2006).

    Article  PubMed  Google Scholar 

  6. Nguyen, M. M., Gill, I. S. & Ellison, L. M. The evolving presentation of renal carcinoma in the United States: trends from the Surveillance, Epidemiology, and End Results program. J. Urol. 176, 2397–2400 (2006).

    Article  PubMed  Google Scholar 

  7. Chow, W. H., Devesa, S. S., Warren, J. L. & Fraumeni, J. F. Jr. Rising incidence of renal cell cancer in the United States. JAMA 281, 1628–1631 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Touijer, K. et al. The expanding role of partial nephrectomy: a critical analysis of indications, results, and complications. Eur. Urol. 57, 214–222 (2010).

    Article  PubMed  Google Scholar 

  9. Heuer, R. et al. A critical analysis of the actual role of minimally invasive surgery and active surveillance for kidney cancer. Eur. Urol. 57, 223–232 (2010).

    Article  PubMed  Google Scholar 

  10. Chin, A. I., Lam, J. S., Figlin, R. A. & Belldegrun, A. S. Surveillance strategies for renal cell carcinoma patients following nephrectomy. Rev. Urol. 8, 1–7 (2006).

    PubMed  PubMed Central  Google Scholar 

  11. Levy, D. A., Slaton, J. W., Swanson, D. A. & Dinney, C. P. Stage specific guidelines for surveillance after radical nephrectomy for local renal cell carcinoma. J. Urol. 159, 1163–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Chae, E. J., Kim, J. K., Kim, S. H., Bae, S. J. & Cho, K. S. Renal cell carcinoma: analysis of postoperative recurrence patterns. Radiology 234, 189–196 (2005).

    Article  PubMed  Google Scholar 

  13. Ljungberg, B. et al. Renal cell carcinoma guideline. Eur. Urol. 51, 1502–1510 (2007).

    Article  PubMed  Google Scholar 

  14. Cutress, M. L., Ratan, H. L., Williams, S. T. & O'Brien, M. F. Update on the management of T1 renal cortical tumours. BJU Int. 106, 1130–1136 (2010).

    Article  PubMed  Google Scholar 

  15. Vaishampayan, U. Metastatic renal cancer: a review of current and future treatment options. Am. J. Cancer 2, 201–210 (2003).

    Article  CAS  Google Scholar 

  16. Flanigan, R. C. et al. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 345, 1655–1659 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Di Lorenzo, G., Autorino, R. & Sternberg, C. N. Metastatic renal cell carcinoma: recent advances in the targeted therapy era. Eur. Urol. 56, 959–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. McDermott, D. F. et al. The high-dose aldesleukin (HD IL-2) Select trial in patients with metastatic renal cell carcinoma (mRCC): preliminary assessment of clinical benefit. Presented at the ASCO 2010 Genitourinary Cancers Symposium.

  19. Rini, B. I. & Flaherty, K. Clinical effect and future considerations for molecularly-targeted therapy in renal cell carcinoma. Urol. Oncol. 26, 543–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Swanton, C. et al. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets. Genome Med. 2, 53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De, P. & Leyland-Jones, B. Whither HER2-related therapeutics? J. Clin. Oncol. 28, 1091–1096 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Lord, C. J. & Ashworth, A. Biology-driven cancer drug development: back to the future. BMC Biol. 8, 38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, W. L. et al. Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor. Cancer Chemother. Pharmacol. 67 (Suppl. 1), S15–S24 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Rosner, I., Bratslavsky, G., Pinto, P. A. & Linehan, W. M. The clinical implications of the genetics of renal cell carcinoma. Urol. Oncol. 27, 131–136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Renshaw, A. A. & Richie, J. P. Subtypes of renal cell carcinoma. Different onset and sites of metastatic disease. Am. J. Clin. Pathol. 111, 539–543 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Banumathy, G. & Cairns, P. Signaling pathways in renal cell carcinoma. Cancer Biol. Ther. 10, 658–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Verine, J. et al. Hereditary renal cancer syndromes: an update of a systematic review. Eur. Urol. doi:10.1016/j.eururo.2010.08.031.

    Article  PubMed  Google Scholar 

  28. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stolle, C. et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum. Mutat. 12, 417–423 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Cohen, H. T. & McGovern, F. J. Renal-cell carcinoma. N. Engl. J. Med. 353, 2477–2490 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Arsanious, A., Bjarnason, G. A. & Yousef, G. M. From bench to bedside: current and future applications of molecular profiling in renal cell carcinoma. Mol. Cancer 8, 20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boer, J. M. et al. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 11, 1861–1870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takahashi, M. et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc. Natl Acad. Sci. USA 98, 9754–9759 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones, J. et al. Gene signatures of progression and metastasis in renal cell cancer. Clin. Cancer Res. 11, 5730–5739 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lenburg, M. E. et al. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer 3, 31 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yao, M. et al. Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J. Pathol. 205, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi, M. et al. Molecular subclassification of kidney tumors and the discovery of new diagnostic markers. Oncogene 22, 6810–6818 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Sultmann, H. et al. Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin. Cancer Res. 11, 646–655 (2005).

    PubMed  Google Scholar 

  40. Young, A. N. et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am. J. Pathol. 158, 1639–1651 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Higgins, J. P. Gene array studies in renal neoplasia. ScientificWorldJournal 6, 502–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ficarra, V. et al. prognostic and therapeutic impact of the histopathologic definition of parenchymal epithelial renal tumors. Eur. Urol. doi:10.1016/j.eururo.2010.08.001.

    Article  PubMed  Google Scholar 

  43. Young, A. N. et al. Beta defensin-1, parvalbumin, and vimentin: a panel of diagnostic immunohistochemical markers for renal tumors derived from gene expression profiling studies using cDNA microarrays. Am. J. Surg. Pathol. 27, 199–205 (2003).

    Article  PubMed  Google Scholar 

  44. Pan, C. C., Chen, P. C. & Ho, D. M. The diagnostic utility of MOC31, BerEP4, RCC marker and CD10 in the classification of renal cell carcinoma and renal oncocytoma: an immunohistochemical analysis of 328 cases. Histopathology 45, 452–459 (2004).

    Article  PubMed  Google Scholar 

  45. Liu, L. et al. Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch. Pathol. Lab. Med. 131, 1290–1297 (2007).

    PubMed  Google Scholar 

  46. Allory, Y. et al. Profiling and classification tree applied to renal epithelial tumours. Histopathology 52, 158–166 (2008).

    CAS  PubMed  Google Scholar 

  47. Bui, M. H. et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin. Cancer Res. 9, 802–811 (2003).

    CAS  PubMed  Google Scholar 

  48. Perret, A. G., Clemencon, A., Li, G., Tostain, J. & Peoc'h, M. Differential expression of prognostic markers in histological subtypes of papillary renal cell carcinoma. BJU Int. 102, 183–187 (2008).

    Article  PubMed  Google Scholar 

  49. Moch, H. et al. High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am. J. Pathol. 154, 981–986 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liao, S. Y., Aurelio, O. N., Jan, K., Zavada, J. & Stanbridge, E. J. Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. Cancer Res. 57, 2827–2831 (1997).

    CAS  PubMed  Google Scholar 

  51. Liou, L. S. et al. Microarray gene expression profiling and analysis in renal cell carcinoma. BMC Urol. 4, 9 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gieseg, M. A. et al. Expression profiling of human renal carcinomas with functional taxonomic analysis. BMC Bioinformatics 3, 26 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brannon, A. R. et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1, 152–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kosari, F. et al. Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin. Cancer Res. 11, 5128–5139 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Skubitz, K. M. & Skubitz, A. P. Differential gene expression in renal-cell cancer. J. Lab. Clin. Med. 140, 52–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Vasselli, J. R. et al. Predicting survival in patients with metastatic kidney cancer by gene-expression profiling in the primary tumor. Proc. Natl Acad. Sci. USA 100, 6958–6963 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao, H. et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 3, e13 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Eichelberg, C., Junker, K., Ljungberg, B. & Moch, H. Diagnostic and prognostic molecular markers for renal cell carcinoma: a critical appraisal of the current state of research and clinical applicability. Eur. Urol. 55, 851–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Vickers, M. M. & Heng, D. Y. Prognostic and predictive biomarkers in renal cell carcinoma. Target Oncol. 5, 85–94 (2010).

    Article  PubMed  Google Scholar 

  60. Hacker, K. E. & Rathmell, W. K. Emerging molecular classification in renal cell carcinoma: implications for drug development. Target Oncol. 5, 75–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lam, J. S., Pantuck, A. J., Belldegrun, A. S. & Figlin, R. A. Protein expression profiles in renal cell carcinoma: staging, prognosis, and patient selection for clinical trials. Clin. Cancer Res. 13, 703s–708s (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Yao, M. et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J. Natl Cancer Inst. 94, 1569–1575 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Schraml, P. et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J. Pathol. 196, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Baldewijns, M. M. et al. Different angiogenic potential in low and high grade sporadic clear cell renal cell carcinoma is not related to alterations in the von Hippel-Lindau gene. Cell Oncol. 31, 371–382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Choueiri, T. K. et al. von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J. Urol. 180, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Cho, D. et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin. Genitourin. Cancer 5, 379–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Rini, B. I. et al. Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and Von Hippel-Lindau gene status. BJU Int. 98, 756–762 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J. H. et al. Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncol. Rep. 13, 859–864 (2005).

    CAS  PubMed  Google Scholar 

  69. Klatte, T. et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin. Cancer Res. 13, 7388–7393 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Lidgren, A. et al. Hypoxia-inducible factor 1 alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur. Urol. 50, 1272–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Jacobsen, J., Rasmuson, T., Grankvist, K. & Ljungberg, B. Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J. Urol. 163, 343–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Na, X. et al. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J. Urol. 170, 588–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Rini, B. I. et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol. 26, 3743–3748 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Porta, C. et al. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int. 77, 809–815 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sabatino, M. et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J. Clin. Oncol. 27, 2645–2652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Escudier, B. J. et al. Update on AVOREN trial in metastatic renal cell carcinoma (mRCC): efficacy and safety in subgroups of patients (pts) and pharmacokinetic (PK) analysis [abstract 5025]. J. Clin. Oncol. 26 (Suppl.) (2008).

    Article  Google Scholar 

  78. Lam, J. S., Leppert, J. T., Figlin, R. A. & Belldegrun, A. S. Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology 66, 1–9 (2005).

    Article  PubMed  Google Scholar 

  79. Leibovich, B. C. et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J. Clin. Oncol. 25, 4757–4764 (2007).

    Article  PubMed  Google Scholar 

  80. Atkins, M. et al. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin. Cancer Res. 11, 3714–3721 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Pantuck, A. J. et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109, 2257–2267 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Klatte, T. et al. Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol. Biomarkers Prev. 18, 894–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Kim, H. L. et al. Using protein expressions to predict survival in clear cell renal carcinoma. Clin. Cancer Res. 10, 5464–5471 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. McShane, L. M. et al. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Urol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  85. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    CAS  Google Scholar 

  86. Faratian, D., Clyde, R. G., Crawford, J. W. & Harrison, D. J. Systems pathology—taking molecular pathology into a new dimension. Nat.Rev. Clin. Oncol. 6, 455–464 (2009).

    Article  PubMed  Google Scholar 

  87. Tsao, M. S. et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Faratian, D. et al. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res. 69, 6713–6720 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Meylan, E. et al. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462, 104–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287–4291 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Dhillon, J. et al. Mucinous tubular and spindle cell carcinoma of the kidney with sarcomatoid change. Am. J. Surg. Pathol. 33, 44–49 (2009).

    Article  PubMed  Google Scholar 

  98. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, D. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Stewart, G. D. et al. The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int. 105, 8–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Faratian, D., Langdon, S. P. & Harrison, D. J. How can systems pathology help us personalize cancer therapy? Discov. Med. 8, 81–86 (2009).

    PubMed  Google Scholar 

  102. Sunitinib malate before and after surgery in treating patients with previously untreated metastatic kidney cancer [online], (2011).

  103. Gonzalez-Angulo, A. M., Hennessy, B. T. & Mills, G. B. Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol. 28, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malhotra, D. et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 38, 5718–5734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Faratian, D., Bown, J. L., Smith, V. A., Langdon, S. P. & Harrison, D. J. Cancer systems biology. Methods Mol. Biol. 662, 245–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Faratian, D. et al. Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. Eur. J. Cancer doi:10.1016/j.ejca.2011.01.014.

    Article  CAS  PubMed  Google Scholar 

  107. Delahunt, B., Bethwaite, P. B., Thornton, A. & Ribas, J. L. Proliferation of renal cell carcinoma assessed by fixation-resistant polyclonal Ki-67 antibody labeling. Correlation with clinical outcome. Cancer 75, 2714–2719 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Rioux-Leclercq, N. et al. Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma. Urology 55, 501–505 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Visapaa, H. et al. Correlation of Ki-67 and gelsolin expression to clinical outcome in renal clear cell carcinoma. Urology 61, 845–850 (2003).

    Article  PubMed  Google Scholar 

  110. Bui, M. H. et al. Prognostic value of carbonic anhydrase IX and KI67 as predictors of survival for renal clear cell carcinoma. J. Urol. 171, 2461–2466 (2004).

    Article  PubMed  Google Scholar 

  111. Zigeuner, R., Ratschek, M., Rehak, P., Schips, L. & Langner, C. Value of p53 as a prognostic marker in histologic subtypes of renal cell carcinoma: a systematic analysis of primary and metastatic tumor tissue. Urology 63, 651–655 (2004).

    Article  PubMed  Google Scholar 

  112. Thompson, R. H. et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 66, 3381–3385 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kallakury, B. V. et al. Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin. Cancer Res. 7, 3113–3119 (2001).

    CAS  PubMed  Google Scholar 

  114. Huang, D. et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70, 1063–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of authors G. D. Stewart, F. C. O'Mahony, A. C. P. Riddick, D. J. Harrison and D. Faratian is funded by the Chief Scientist Office, grant number ETM37. The authors would like to thank SCOTRRCC coapplicants and collaborators for their useful discussions on some of the topics discussed in this Review. The authors would also like to acknowledge Dr. Gordon Mills for his helpful discussion developing the ideas behind biomarker properties and robustness. C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

G. D. Stewart, F. C. O'Mahony and D. Faratian researched data for, and wrote, the article. All authors made a substantial contribution to discussions of content and were involved in the review and editing of the article before submission.

Corresponding author

Correspondence to Grant D. Stewart.

Ethics declarations

Competing interests

G. D. Stewart declares an association with Pfizer (speakers bureau/honoraria).

T. Powles declares associations with Astra Zeneca (grant/research support), GlaxoSmithKline (grant/research support) and Pfizer (speakers bureau/honoraria and grant/research support).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, G., O'Mahony, F., Powles, T. et al. What can molecular pathology contribute to the management of renal cell carcinoma?. Nat Rev Urol 8, 255–265 (2011). https://doi.org/10.1038/nrurol.2011.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing