Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome

Key Points

  • Fibromyalgia and complex regional pain syndrome (CRPS) have distinct clinical phenotypes but share features such as pain, allodynia and peripheral dysaesthesia

  • Factors involving the brain and spinal cord lead to central sensitization, which has a dominant role in both disorders

  • Neurogenic inflammation, resulting from the release of proinflammatory neuropeptides from C-fibres, is also prominent in both disorders and contributes to allodynia, tissue swelling and dysaesthesia

  • Neurogenic inflammation involves interactions of the innate immune system with the peripheral and central nervous systems of patients with fibromyalgia or CRPS

  • Although the pathogenesis of both fibromyalgia and CRPS is dominated by central mechanisms, components of neurogenic neuroinflammation might be useful therapeutic targets in patients with these disorders

Abstract

Although fibromyalgia and complex regional pain syndrome (CRPS) have distinct clinical phenotypes, they do share many other features. Pain, allodynia and dysaesthesia occur in each condition and seem to exist on a similar spectrum. Fibromyalgia and CRPS can both be triggered by specific traumatic events, although fibromyalgia is most commonly associated with psychological trauma and CRPS is most often associated with physical trauma, which is frequently deemed routine or minor by the patient. Fibromyalgia and CRPS also seem to share many pathophysiological mechanisms, among which the most important are those involving central effects. Nonetheless, peripheral effects, such as neurogenic neuroinflammation, are also important contributors to the clinical features of each of these disorders. This Review highlights the differing degrees to which neurogenic neuroinflammation might contribute to the multifactorial pathogenesis of both fibromyalgia and CRPS, and discusses the evidence suggesting that this mechanism is an important link between the two disorders, and could offer novel therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central and peripheral effects associated with release of neuropeptides by terminal C-fibres.
Figure 2: Clinical features of neurogenic inflammation in fibromyalgia and complex regional pain syndrome.

Similar content being viewed by others

References

  1. Gowers, W. R. A Lecture on lumbago: its lessons and analogues. Delivered at the National Hospital for the Paralysed and Epileptic. BMJ 1, 117–121 (1904).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inanici, F. & Yunus, M. B. History of fibromyalgia: past to present. Curr. Pain Headache Rep. 8, 369–378 (2004).

    Article  PubMed  Google Scholar 

  3. Sudeck, P. Über die akute entzündliche knochenatrophie [German]. Arch. Klin. Chir. 62, 147–156 (1900).

    Google Scholar 

  4. Sudeck, P. Die sogen. Akute Knockenatrophie als Entzündungsvorgang [German]. Der Chirurg. 15, 449–458 (1942).

    Google Scholar 

  5. Linnman, C., Becerra, L. & Borsook, D. Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J. Neuroimmune Pharmacol. 8, 547–563 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Clauw, D. J. Fibromyalgia: a clinical review. JAMA 311, 1547–1555 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152 (Suppl.), S2–S15 (2011).

    Article  PubMed  Google Scholar 

  8. Goebel, A. Complex regional pain syndrome in adults. Rheumatology (Oxford) 50, 1739–1750 (2011).

    Article  Google Scholar 

  9. Clauw, D. J. Fibromyalgia and related conditions. Mayo Clin. Proc. 90, 680–692 (2015).

    Article  PubMed  Google Scholar 

  10. Birklein, F. & Schlereth, T. Complex regional pain syndrome-significant progress in understanding. Pain 156 (Suppl. 1), S94–S103 (2015).

    Article  PubMed  Google Scholar 

  11. Julien, N., Goffaux, P., Arsenault, P. & Marchand, S. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain 114, 295–302 (2005).

    Article  PubMed  Google Scholar 

  12. Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clauw, D. J., Arnold, L. M., McCarberg, B. H. & FibroCollaborative. The science of fibromyalgia. Mayo Clin. Proc. 86, 907–911 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Napadow, V., Kim, J., Clauw, D. J. & Harris, R. E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 64, 2398–2403 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jensen, K. B. et al. Patients with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. Mol. Pain 8, 32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sarchielli, P., Di Filippo, M., Nardi, K. & Calabresi, P. Sensitization, glutamate, and the link between migraine and fibromyalgia. Curr. Pain Headache Rep. 11, 343–351 (2007).

    Article  PubMed  Google Scholar 

  17. Harris, R. E. et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 60, 3146–3152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris, R. E. et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 119, 1453–1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Olivan-Blazquez, B. et al. Efficacy of memantine in the treatment of fibromyalgia: a double-blind, randomised, controlled trial with 6-month follow-up. Pain 155, 2517–2525 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez-Martinez, L. A., Mora, T., Vargas, A., Fuentes-Iniestra, M. & Martinez-Lavin, M. Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis: a review of case–control studies. J. Clin. Rheumatol. 20, 146–150 (2014).

    Article  PubMed  Google Scholar 

  21. Tanriverdi, F., Karaca, Z., Unluhizarci, K. & Kelestimur, F. The hypothalamo–pituitary–adrenal axis in chronic fatigue syndrome and fibromyalgia syndrome. Stress 10, 13–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Yunus, M. B. Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin Arthritis Rheum. 36, 339–356 (2007).

    Article  PubMed  Google Scholar 

  23. Marinus, J. et al. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 10, 637–648 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Pietro, F. et al. Primary somatosensory cortex function in complex regional pain syndrome: a systematic review and meta-analysis. J. Pain 14, 1001–1018 (2013).

    Article  PubMed  Google Scholar 

  25. Borchers, A. T. & Gershwin, M. E. Complex regional pain syndrome: a comprehensive and critical review. Autoimmun. Rev. 13, 242–265 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Moseley, G. L. & Flor, H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil. Neural Repair 26, 646–652 (2012).

    Article  PubMed  Google Scholar 

  27. Knudsen, L., Finch, P. M. & Drummond, P. D. The specificity and mechanisms of hemilateral sensory disturbances in complex regional pain syndrome. J. Pain 12, 985–990 (2011).

    Article  PubMed  Google Scholar 

  28. Lewis, T. The Blood Vessels of the Human Skin and Their Responses. (Shaw and Sons, 1927).

    Google Scholar 

  29. Wallengren, J. & Moller, H. The effect of capsaicin on some experimental inflammations in human skin. Acta Derm. Venereol. 66, 375–380 (1986).

    CAS  PubMed  Google Scholar 

  30. Schmelz, M. et al. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport 11, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Holzer, P. Neurogenic vasodilatation and plasma leakage in the skin. Gen. Pharmacol. 30, 5–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birklein, F. & Schmelz, M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS). Neurosci Lett. 437, 199–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Huygen, F., O'Connell, N. & Harden, N. In Pain 2014 Refresher Courses, 15th World Congress on Pain (eds Raja, S. N. & Sommer, C. L.) 259–272 (International Association for the Study of Pain, 2014).

    Google Scholar 

  35. Coderre, T. J. & Bennett, G. J. A hypothesis for the cause of complex regional pain syndrome-type I (reflex sympathetic dystrophy): pain due to deep-tissue microvascular pathology. Pain Med. 11, 1224–1238 (2010).

    Article  PubMed  Google Scholar 

  36. Millecamps, M. & Coderre, T. J. Rats with chronic post-ischemia pain exhibit an analgesic sensitivity profile similar to human patients with complex regional pain syndrome—type I. Eur. J. Pharmacol. 583, 97–102 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Littlejohn, G. Complex regional pain syndrome. Rheumatology (Oxford) 53, 1157–1158 (2014).

    Article  Google Scholar 

  38. Petersel, D. L., Dror, V. & Cheung, R. Central amplification and fibromyalgia: disorder of pain processing. J. Neurosci. Res. 89, 29–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Lewis, G. N., Rice, D. A. & McNair, P. J. Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J. Pain 13, 936–944 (2012).

    Article  PubMed  Google Scholar 

  40. Malin, K. & Littlejohn, G. O. Stress modulates key psychological processes and characteristic symptoms in females with fibromyalgia. Clin. Exp. Rheumatol. 31 (Suppl. 79), S64–S71 (2013).

    PubMed  Google Scholar 

  41. Cook, D. B. et al. Functional imaging of pain in patients with primary fibromyalgia. J. Rheumatol. 31, 364–378 (2004).

    PubMed  Google Scholar 

  42. Malin, K. & Littlejohn, G. O. Personality and fibromyalgia syndrome. Open Rheumatol. J. 6, 273–285 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grande, L. A., Loeser, J. D., Ozuna, J., Ashleigh, A. & Samii, A. Complex regional pain syndrome as a stress response. Pain 110, 495–498 (2004).

    Article  PubMed  Google Scholar 

  44. Schlereth, T., Drummond, P. D. & Birklein, F. Inflammation in CRPS: role of the sympathetic supply. Auton. Neurosci. 182, 102–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Van Houdenhove, B., Egle, U. & Luyten, P. The role of life stress in fibromyalgia. Curr. Rheumatol. Rep. 7, 365–370 (2005).

    Article  PubMed  Google Scholar 

  46. Haviland, M. G., Morton, K. R., Oda, K. & Fraser, G. E. Traumatic experiences, major life stressors, and self-reporting a physician-given fibromyalgia diagnosis. Psychiatry Res. 177, 335–341 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dilek, B. et al. Anxious personality is a risk factor for developing complex regional pain syndrome type I. Rheumatol. Int. 32, 915–920 (2012).

    Article  PubMed  Google Scholar 

  48. Oren, O. & Ablin, J. N. Lighting up the genetic understanding of fibromyalgia. J. Rheumatol. 40, 214–215 (2013).

    Article  PubMed  Google Scholar 

  49. Shirani, P. et al. Familial occurrence of complex regional pain syndrome. Can. J. Neurol. Sci. 37, 389–394 (2010).

    Article  PubMed  Google Scholar 

  50. Lapossy, E. et al. Cold-induced vasospasm in patients with fibromyalgia and chronic low back pain in comparison to healthy subjects. Clin. Rheumatol. 13, 442–445 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Dinerman, H., Goldenberg, D. L. & Felson, D. T. A prospective evaluation of 118 patients with the fibromyalgia syndrome: prevalence of Raynaud's phenomenon, sicca symptoms, ANA, low complement, and Ig deposition at the dermal-epidermal junction. J. Rheumatol. 13, 368–373 (1986).

    CAS  PubMed  Google Scholar 

  52. Bennett, R. M. et al. Symptoms of Raynaud's syndrome in patients with fibromyalgia. A study utilizing the Nielsen test, digital photoplethysmography, and measurements of platelet α2-adrenergic receptors. Arthritis Rheum. 34, 264–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Pay, S. et al. Evaluation of vascular injury with proinflammatory cytokines, thrombomodulin and fibronectin in patients with primary fibromyalgia. Nagoya J. Med. Sci. 63, 115–122 (2000).

    CAS  PubMed  Google Scholar 

  54. Caro, X. J. Immunofluorescent detection of IgG at the dermal-epidermal junction in patients with apparent primary fibrositis syndrome. Arthritis Rheum. 27, 1174–1179 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Smythe, H. A. In Textbook of Rheumatology (eds. Kelley, W. N. et al.) 481–489 (W. B. Saunders, 1985).

    Google Scholar 

  56. Yunus, M., Masi, A. T., Calabro, J. J., Miller, K. A. & Feigenbaum, S. L. Primary fibromyalgia (fibrositis): clinical study of 50 patients with matched normal controls. Semin. Arthritis Rheum. 11, 151–171 (1981).

    Article  CAS  PubMed  Google Scholar 

  57. Hauser, W. et al. Diagnosis of fibromyalgia syndrome—a comparison of Association of the Medical Scientific Societies in Germany, survey, and American College of Rheumatology criteria. Clin. J. Pain 26, 505–511 (2010).

    Article  PubMed  Google Scholar 

  58. Littlejohn, G. O. & Granges, G. The relationship between vertebral dysfunction and clinical features of fibromyalgia syndrome. J. Orthopedic Rheum. 8, 97–105 (1995).

    Google Scholar 

  59. Littlejohn, G. O., Weinstein, C. & Helme, R. D. Increased neurogenic inflammation in fibrositis syndrome. J. Rheumatol. 14, 1022–1025 (1987).

    CAS  PubMed  Google Scholar 

  60. Lentz, M. J., Landis, C. A., Rothermel, J. & Shaver, J. L. Effects of selective slow wave sleep disruption on musculoskeletal pain and fatigue in middle aged women. J. Rheumatol. 26, 1586–1592 (1999).

    CAS  PubMed  Google Scholar 

  61. Caro, X. J., Wolfe, F., Johnston, W. H. & Smith, A. L. A controlled and blinded study of immunoreactant deposition at the dermal-epidermal junction of patients with primary fibrositis syndrome. J. Rheumatol. 13, 1086–1092 (1986).

    CAS  PubMed  Google Scholar 

  62. Caro, X. J. Immunofluorescent studies of skin in primary fibrositis syndrome. Am. J. Med. 81, 43–49 (1986).

    Article  CAS  PubMed  Google Scholar 

  63. Eneström, S., Bengtson, A., Lindström, F. & Johan, K. Attachment of IgG to dermal extracellular matrix in patients with fibromyalgia. Clin. Exp. Rheumatol. 8, 127–135 (1990).

    PubMed  Google Scholar 

  64. Eneström, S., Bengtsson, A. & Frödin, T. Dermal IgG deposits and increase of mast cells in patients with fibromyalgia—relevant findings or epiphenomena? Scand. J. Rheumatol. 26, 308–313 (1997).

    Article  PubMed  Google Scholar 

  65. Blanco, I. et al. Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 29, 1403–1412 (2010).

    Article  PubMed  Google Scholar 

  66. Kramer, H. H. et al. Osteoprotegerin: a new biomarker for impaired bone metabolism in complex regional pain syndrome? Pain 155, 889–895 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Oaklander, A. L. & Fields, H. L. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann. Neurol. 65, 629–638 (2009).

    Article  PubMed  Google Scholar 

  68. Harden, R. N., Bruehl, S., Stanton-Hicks, M. & Wilson, P. R. Proposed new diagnostic criteria for complex regional pain syndrome. Pain Med. 8, 326–331 (2007).

    Article  PubMed  Google Scholar 

  69. Birklein, F., Riedl, B., Claus, D., Neundorfer, B. & Handwerker, H. O. Cutaneous norepinephrine application in complex regional pain syndrome. Eur. J. Pain. 1, 123–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Weber, M., Birklein, F., Neundorfer, B. & Schmelz, M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 91, 251–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Milligan, E. D. & Watkins, L. R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xanthos, D. N. & Sandkühler, J. Neurogenic neuroinflammation: inflammatory reactions in response to neuronal activity. Nat. Rev. Neurosci. 15, 43–53 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Watkins, L. R. & Maier, S. F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 51, 29–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Abeles, A. M., Pillinger, M. H., Solitar, B. M. & Abeles, M. Narrative review: the pathophysiology of fibromyalgia. Ann. Intern. Med. 146, 726–734 (2007).

    Article  PubMed  Google Scholar 

  75. Watkins, L. R. & Maier, S. F. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J. Intern. Med. 257, 139–155 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Vaeroy, H., Helle, R., Forre, O., Kass, E. & Terenius, L. Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromyalgia: new features for diagnosis. Pain 32, 21–26 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Russell, I. J. et al. Elevated cerebrospinal fluid levels of substance P in patients with the fibromyalgia syndrome. Arthritis Rheum. 37, 1593–1601 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Giovengo, S. L., Russell, I. J. & Larson, A. A. Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J. Rheumatol. 26, 1564–1569 (1999).

    CAS  PubMed  Google Scholar 

  79. Sarchielli, P. et al. Increased levels of neurotrophins are not specific for chronic migraine: evidence from primary fibromyalgia syndrome. J. Pain 8, 737–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Vaeroy, H., Sakurada, T., Forre, O., Kåss, E. & Terenius, L. Modulation of pain in fibromyalgia (fibrositis syndrome): cerebrospinal fluid (CSF) investigation of pain related neuropeptides with special reference to calcitonin gene related peptide (CGRP). J. Rheumatol. Suppl. 19, 94–97 (1989).

    CAS  PubMed  Google Scholar 

  81. Yip, J. & Chahl, L. A. Localization of NK1 and NK3 receptors in guinea-pig brain. Regul. Pept. 98, 55–62 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Lyon, P., Cohen, M. & Quintner, J. An evolutionary stress-response hypothesis for chronic widespread pain (fibromyalgia syndrome). Pain Med. 12, 1167–1178 (2011).

    Article  PubMed  Google Scholar 

  83. Geracioti, T. D. Jr. et al. Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am. J. Psychiatry 163, 637–643 (2006).

    Article  PubMed  Google Scholar 

  84. Uceyler, N. et al. Small fibre pathology in patients with fibromyalgia syndrome. Brain 136, 1857–1867 (2013).

    Article  PubMed  Google Scholar 

  85. de Tommaso, M. et al. Update on laser-evoked potential findings in fibromyalgia patients in light of clinical and skin biopsy features. J. Neurol. 261, 461–472 (2014).

    Article  PubMed  Google Scholar 

  86. Giannoccaro, M. P., Donadio, V., Incensi, A., Avoni, P. & Liguori, R. Small nerve fiber involvement in patients referred for fibromyalgia. Muscle Nerve 49, 757–759 (2014).

    Article  PubMed  Google Scholar 

  87. Kosmidis, M. L. et al. Reduction of intraepidermal nerve fiber density (IENFD) in the skin biopsies of patients with fibromyalgia: a controlled study. J. Neurol. Sci. 347, 143–147 (2014).

    Article  PubMed  Google Scholar 

  88. Kim, S. H., Kim, D. H., Oh, D. H. & Clauw, D. J. Characteristic electron microscopic findings in the skin of patients with fibromyalgia—preliminary study. Clin. Rheumatol. 27, 407–411 (2008).

    Article  PubMed  Google Scholar 

  89. Oaklander, A. L. & Klein, M. M. Evidence of small-fiber polyneuropathy in unexplained, juvenile-onset, widespread pain syndromes. Pediatrics 131, e1091–e1100 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Serra, J. et al. Hyperexcitable C nociceptors in fibromyalgia. Ann. Neurol. 75, 196–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Watson, N. F., Buchwald, D., Goldberg, J., Noonan, C. & Ellenbogen, R. G. Neurologic signs and symptoms in fibromyalgia. Arthritis Rheum. 60, 2839–2844 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Birklein, F., Schmelz, M., Schifter, S. & Weber, M. The important role of neuropeptides in complex regional pain syndrome. Neurology 57, 2179–2184 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Oyen, W. J. et al. Reflex sympathetic dystrophy of the hand: an excessive inflammatory response? Pain 55, 151–157 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. de Mos, M. et al. Medical history and the onset of complex regional pain syndrome (CRPS). Pain 139, 458–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Baron, R. & Wasner, G. Complex regional pain syndromes. Curr. Pain Headache Rep. 50, 114–123 (2001).

    Article  Google Scholar 

  96. de Mos, M., Huygen, F. J., Stricker, B. H., Dieleman, J. P. & Sturkenboom, M. C. The association between ACE inhibitors and the complex regional pain syndrome: Suggestions for a neuro-inflammatory pathogenesis of CRPS. Pain 142, 218–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Uceyler, N., Eberle, T., Rolke, R., Birklein, F. & Sommer, C. Differential expression patterns of cytokines in complex regional pain syndrome. Pain 132, 195–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Albrecht, P. J. et al. Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain 120, 244–266 (2006).

    Article  PubMed  Google Scholar 

  99. Wallace, D. J. Is there a role for cytokine based therapies in fibromyalgia? Curr. Pharm. Des. 12, 17–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Pillemer, S. R., Bradley, L. A., Crofford, L. J., Moldofsky, H. & Chrousos, G. P. The neuroscience and endocrinology of fibromyalgia. Arthritis Rheum. 40, 1928–1939 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A. & Shoenfeld, Y. Fibromyalgia and cytokines. Immunol. Lett. (2014).

  102. Generaal, E. et al. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain. Pain 155, 1605–1612 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Uceyler, N., Hauser, W. & Sommer, C. Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet. Disord. 12, 245 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kadetoff, D., Lampa, J., Westman, M., Andersson, M. & Kosek, E. Evidence of central inflammation in fibromyalgia—increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 242, 33–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Heijmans-Antonissen, C. et al. Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1. Mediators Inflamm. 2006, 28398 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Huygen, F. J. et al. Evidence for local inflammation in complex regional pain syndrome type 1. Mediators Inflamm. 11, 47–51 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Munnikes, R. J. et al. Intermediate stage complex regional pain syndrome type 1 is unrelated to proinflammatory cytokines. Mediators Inflamm. 2005, 366–372 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Maihofner, C., Handwerker, H. O., Neundorfer, B. & Birklein, F. Mechanical hyperalgesia in complex regional pain syndrome: a role for TNF-α? Neurology 65, 311–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Alexander, G. M., van Rijn, M. A., van Hilten, J. J., Perreault, M. J. & Schwartzman, R. J. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 116, 213–219 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Parkitny, L. et al. Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80, 106–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schinkel, C. & Kirschner, M. H. Status of immune mediators in complex regional pain syndrome type I. Curr. Pain Headache Rep. 12, 182–185 (2008).

    Article  PubMed  Google Scholar 

  112. Kingery, W. S., Davies, M. F. & Clark, J. D. A substance P receptor (NK1) antagonist can reverse vascular and nociceptive abnormalities in a rat model of complex regional pain syndrome type II. Pain 104, 75–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Guo, T. Z., Wei, T. & Kingery, W. S. Glucocorticoid inhibition of vascular abnormalities in a tibia fracture rat model of complex regional pain syndrome type I. Pain 121, 158–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Birklein, F. et al. Activation of cutaneous immune responses in complex regional pain syndrome. J. Pain 15, 485–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kohr, D. et al. Autoimmunity against the β2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. Pain 152, 2690–2700 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Straube, S., Derry, S., Moore, R. A. & McQuay, H. J. Cervico-thoracic or lumbar sympathectomy for neuropathic pain and complex regional pain syndrome. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD002918. http://dx.doi.org/10.1002/14651858.CD002918.pub2.

  117. Bengtsson, A. & Bengtsson, M. Regional sympathetic blockade in primary fibromyalgia. Pain 33, 161–167 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Lerma, C. et al. Nocturnal heart rate variability parameters as potential fibromyalgia biomarker: correlation with symptoms severity. Arthritis Res. Ther. 13, R185 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Martinez-Lavin, M. et al. Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISRCTN70707830]. BMC Musculoskelet. Disord. 3, 2 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Terkelsen, A. J. et al. Heart rate variability in complex regional pain syndrome during rest and mental and orthostatic stress. Anesthesiology 116, 133–146 (2012).

    Article  PubMed  Google Scholar 

  121. Arnold, J. M., Teasell, R. W., MacLeod, A. P., Brown, J. E. & Carruthers, S. G. Increased venous α-adrenoceptor responsiveness in patients with reflex sympathetic dystrophy. Ann. Intern. Med. 118, 619–621 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Maestroni, G. J. Sympathetic nervous system influence on the innate immune response. Ann. NY Acad. Sci. 1069, 195–207 (2006).

    Article  PubMed  Google Scholar 

  123. Drummond, P. D. Involvement of the sympathetic nervous system in complex regional pain syndrome. Int. J. Low. Extrem. Wounds 3, 35–42 (2004).

    Article  PubMed  Google Scholar 

  124. Hassett, A. L. & Clauw, D. J. Does psychological stress cause chronic pain? Psychiatr. Clin. North Am. 34, 579–594 (2011).

    Article  PubMed  Google Scholar 

  125. Light, K. C. et al. Adrenergic dysregulation and pain with and without acute β-blockade in women with fibromyalgia and temporomandibular disorder. J. Pain 10, 542–552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Inchiosa, M. A. Jr. Phenoxybenzamine in complex regional pain syndrome: potential role and novel mechanisms. Anesthesiol. Res. Pract. 2013, 978615 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. O'Connell, N. E., Wand, B. M., McAuley, J., Marston, L. & Moseley, G. L. Interventions for treating pain and disability in adults with complex regional pain syndrome. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD009416. http://dx.doi.org/10.1002/14651858.CD009416.pub2.

  128. Skaer, T. L. Fibromyalgia: disease synopsis, medication cost effectiveness and economic burden. Pharmacoeconomics 32, 457–466 (2014).

    Article  PubMed  Google Scholar 

  129. Hill, R. NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Pharmacol. Sci. 21, 244–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Tamburin, S. et al. Immunoglobulin G for the treatment of chronic pain: report of an expert workshop. Pain Med. 15, 1072–1082 (2014).

    Article  PubMed  Google Scholar 

  131. Dirckx, M., Stronks, D. L., Groeneweg, G. & Huygen, F. J. Effect of immunomodulating medications in complex regional pain syndrome: a systematic review. Clin. J. Pain 28, 355–363 (2012).

    Article  PubMed  Google Scholar 

  132. Hutchinson, M. R. et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of Toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28, 20–29 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Younger, J., Parkitny, L. & McLain, D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin. Rheumatol. 33, 451–459 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rolan, P., Hutchinson, M. & Johnson, K. Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin. Pharmacother. 10, 2897–2904 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Yasui, M. et al. A chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia 62, 1407–1417 (2014).

    Article  PubMed  Google Scholar 

  136. Azari, P. et al. Efficacy and safety of ketamine in patients with complex regional pain syndrome: a systematic review. CNS Drugs 26, 215–228 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Ablin, J. N. & Buskila, D. Emerging therapies for fibromyalgia: an update. Expert Opin. Emerg. Drugs 15, 521–533 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Sinis, N. et al. Memantine treatment of complex regional pain syndrome: a preliminary report of six cases. Clin. J. Pain 23, 237–243 (2007).

    Article  PubMed  Google Scholar 

  139. Neuropeptide. Wikipedia: the free encyclopedia [online], (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Littlejohn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Littlejohn, G. Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome. Nat Rev Rheumatol 11, 639–648 (2015). https://doi.org/10.1038/nrrheum.2015.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing