Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms

Abstract

Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death directly related to epilepsy, and most frequently occurs in people with chronic epilepsy. The main risk factors for SUDEP are associated with poorly controlled seizures, suggesting that most cases of SUDEP are seizure-related events. Dysregulation in cardiac and respiratory physiology, dysfunction in systemic and cerebral circulation physiology, and seizure-induced hormonal and metabolic changes might all contribute to SUDEP. Cardiac factors include bradyarrhythmias and asystole, as well as tachyarrhythmias and alterations to cardiac repolarization. Altered electrolytes and blood pH, as well as the release of catecholamines, modulate cardiac excitability and might facilitate arrhythmias. Respiratory symptoms are not uncommon during seizures and comprise central apnea or bradypnea, and, less frequently, obstruction of the airways and neurogenic pulmonary edema. Alterations to autonomic function, such as a reduction in heart rate variability or disturbed baroreflex sensitivity, can impair the body's capacity to cope with challenging situations of elevated stress, such as seizures. Here, we summarize data on the incidence of and risk factors for SUDEP, and consider the pathophysiological aspects of chronic epilepsy that might lead to sudden death. We suggest that SUDEP is caused by the fatal coexistence of several predisposing and triggering factors.

Key Points

  • Sudden unexpected death in epilepsy (SUDEP) is the most frequent cause of death directly related to epilepsy, and most often occurs in individuals with chronic epilepsy

  • The most important risk factors for SUDEP are related to poorly controlled seizures, suggesting that SUDEP is a seizure-related event

  • Cardiac arrhythmia, respiratory dysfunction, dysregulation of systemic or cerebral circulation, and seizure-induced hormonal and metabolic changes have all been suggested as potential pathomechanisms in SUDEP

  • SUDEP is most probably triggered by the peri-ictal concurrence of a number of predisposing and precipitating factors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that might affect SUDEP.

Similar content being viewed by others

References

  1. Bacon G. M. On the modes of death in epilepsy. Lancet 91, 555–556 (1868).

    Article  Google Scholar 

  2. Nashef, L. Sudden unexpected death in epilepsy: terminology and definitions. Epilepsia 38 (Suppl. 11), S6–S8 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Annegers, J. F. United States perspective on definitions and classifications. Epilepsia 38 (Suppl. 11), S9–S12 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Ficker, D. M. et al. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology 51, 1270–1274 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Téllez-Zenteno, J. F., Ronquillo, L. H. & Wiebe, S. Sudden unexpected death in epilepsy: evidence-based analysis of incidence and risk factors. Epilepsy Res. 65, 101–115 (2005).

    Article  PubMed  Google Scholar 

  6. Langan, Y., Nashef, L. & Sander, J. W. Sudden unexpected death in epilepsy: a series of witnessed deaths. J. Neurol. Neurosurg. Psychiatry 68, 211–213 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hitiris, N. et al. Sudden unexpected death in epilepsy: a search for risk factors. Epilepsy Behav. 10, 138–141 (2007).

    Article  PubMed  Google Scholar 

  8. Nashef, L., Garner, S., Sander, J. W., Fish, D. R. & Shorvon, S. D. Circumstances of death in sudden death in epilepsy: interviews with bereaved relatives. J. Neurol. Neurosurg. Psychiatry 64, 349–352 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nilsson, L., Farahmand, B. Y., Persson, P. G., Thiblin, I. & Tomson, T. Risk factors for sudden unexpected death in epilepsy: a case-control study. Lancet 353, 888–893 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Beran, R. G., Weber, S., Sungaran, R., Venn, N. & Hung, A. Review of the legal obligations of the doctor to discuss sudden unexplained death in epilepsy (SUDEP)—a cohort controlled comparative cross-matched study in an outpatient epilepsy clinic. Seizure 13, 523–528 (2004).

    Article  PubMed  Google Scholar 

  11. Langan, Y., Nashef, L. & Sander, J. W. Case–control study of SUDEP. Neurology 64, 1131–1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Terrence, C. F., Rao, G. R. & Perper, J. A. Neurogenic pulmonary edema in unexpected, unexplained death of epileptic patients. Ann. Neurol. 9, 458–464 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Thom, M., Seetah, S., Sisodiya, S., Koepp, M. & Scaravilli, F. Sudden and unexpected death in epilepsy (SUDEP): evidence of acute neuronal injury using HSP-70 and c-Jun immunohistochemistry. Neuropathol. Appl. Neurobiol. 29, 132–143 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. P-Codrea Tigaran, S., Dalager-Pedersen, S., Baandrup, U., Dam, M. & Vesterby-Charles, A. Sudden unexpected death in epilepsy: is death by seizures a cardiac disease? Am. J. Forensic Med. Pathol. 26, 99–105 (2005).

    PubMed  Google Scholar 

  15. McKee, J. R. & Bodfish, J. W. Sudden unexpected death in epilepsy in adults with mental retardation. Am. J. Ment. Retard. 105, 229–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Walczak, T. S. et al. Incidence and risk factors in sudden unexpected death in epilepsy: a prospective cohort study. Neurology 56, 519–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Timmings, P. L. Sudden unexpected death in epilepsy: a local audit. Seizure 2, 287–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson, L. et al. Antiepileptic drug therapy and its management in sudden unexpected death in epilepsy: a case-control study. Epilepsia 42, 667–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Walczak, T. Do antiepileptic drugs play a role in sudden unexpected death in epilepsy? Drug Saf. 26, 673–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Nashef, L., Fish, D. R., Garner, S., Sander, J. W. & Shorvon, S. D. Sudden death in epilepsy: a study of incidence in a young cohort with epilepsy and learning difficulty. Epilepsia 36, 1187–1194 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Yuen, A. W., Thompson, P. J., Flugel, D., Bell, G. S. & Sander, J. W. Mortality and morbidity rates are increased in people with epilepsy: is stress part of the equation? Epilepsy Behav. 10, 1–7 (2007).

    Article  PubMed  Google Scholar 

  22. Coronel, R. et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112, 2769–2777 (2005).

    Article  PubMed  Google Scholar 

  23. Tan, H. L. et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Amin, A. S., Meregalli, P. G., Bardai, A., Wilde, A. A. & Tan, H. L. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann. Intern. Med. 149, 216–218 (2008).

    Article  PubMed  Google Scholar 

  25. Verkerk, A. O., van Ginneken, A. C., van Veen, T. A. & Tan, H. L. Effects of heart failure on brain-type Na+ channels in rabbit ventricular myocytes. Europace 9, 571–577 (2007).

    Article  PubMed  Google Scholar 

  26. Nashef, L., Hindocha, N. & Makoff, A. Risk factors in sudden death in epilepsy (SUDEP): the quest for mechanisms. Epilepsia 48, 859–871 (2007).

    Article  PubMed  Google Scholar 

  27. Stein, P. K. & Kleiger, R. E. Insights from the study of heart rate variability. Annu. Rev. Med. 50, 249–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tomson, T., Ericson, M., Ihrman, C. & Lindblad, L. E. Heart rate variability in patients with epilepsy. Epilepsy Res. 30, 77–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Ronkainen, E. et al. Suppressed circadian heart rate dynamics in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 76, 1382–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kloster, R. & Engelskjøn, T. Sudden unexpected death in epilepsy (SUDEP): a clinical perspective and a search for risk factors. J. Neurol. Neurosurg. Psychiatry 67, 439–444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diehl, B., Diehl, R. R., Stodieck, S. R. & Ringelstein, E. B. Spontaneous oscillations in cerebral blood flow velocities in middle cerebral arteries in control subjects and patients with epilepsy. Stroke 28, 2457–2459 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Hilz, M. J., Devinsky, O., Doyle, W., Mauerer, A. & Dütsch. M. Decrease of sympathetic cardiovascular modulation after temporal lobe epilepsy surgery. Brain 125, 985–995 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Evrengül, H. et al. Time and frequency domain analyses of heart rate variability in patients with epilepsy. Epilepsy Res. 63, 131–139 (2005).

    Article  PubMed  Google Scholar 

  34. Dütsch, M., Hilz, M. J. & Devinsky, O. Impaired baroreflex function in temporal lobe epilepsy. J. Neurol. 253, 1300–1308 (2006).

    Article  PubMed  Google Scholar 

  35. Mukherjee, S. et al. Cardiovascular autonomic functions in well-controlled and intractable partial epilepsies. Epilepsy Res. doi: 10.1016/j.eplepsyres.2009.03.021.

  36. Dütsch, M., Devinsky, O., Doyle, W., Marthol, H. & Hilz, M. J. Cerebral autoregulation improves in epilepsy patients after temporal lobe surgery. J. Neurol. 251, 1190–1197 (2004).

    Article  PubMed  Google Scholar 

  37. Persson, H., Kumlien, E., Ericson, M. & Tomson, T. Preoperative heart rate variability in relation to surgery outcome in refractory epilepsy. Neurology 65, 1021–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Druschky, A. et al. Interictal cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [123I]metaiodobenzylguanidine-SPECT. Brain 124, 2372–2382 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kerling, F. et al. Relation between ictal asystole and cardiac sympathetic dysfunction shown by MIBG-SPECT. Acta Neurol. Scand. doi:10.1111/j.1600–04042008.01135.x.

  40. Hilz, M. J. et al. Outcome of epilepsy surgery correlates with sympathetic modulation and neuroimaging of the heart. J. Neurol. Sci. 216, 153–162 (2003).

    Article  PubMed  Google Scholar 

  41. Tisdale, J. E., Patel, R., Webb, C. R., Borzak, S. & Zarowitz, B. J. Electrophysiologic and proarrhythmic effects of intravenous inotropic agents. Prog. Cardiovasc. Dis. 38, 167–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Blumhardt, L. D., Smith, P. E. & Owen, L. Electrocardiographic accompaniments of temporal lobe epileptic seizures. Lancet 327, 1051–1056 (1986).

    Article  Google Scholar 

  43. Natelson, B. H., Suarez, R. V., Terrence, C. F. & Turizo, R. Patients with epilepsy who die suddenly have cardiac disease. Arch. Neurol. 55, 857–860 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Opeskin, K., Thomas, A. & Berkovic, S. F. Does cardiac conduction pathology contribute to sudden unexpected death in epilepsy? Epilepsy Res. 40, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Akashi, Y. J., Goldstein, D. S., Barbaro, G. & Ueyama, T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 118, 2754–2762 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chin, P. S., Branch, K. R. & Becker, K. J. Postictal neurogenic stunned myocardium. Neurology 64, 1977–1978 (2005).

    Article  PubMed  Google Scholar 

  47. Keilson, M. J., Hauser, W. A., Magrill, J. P. & Goldman, M. ECG abnormalities in patients with epilepsy. Neurology 37, 1624–1626 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Drake, M. E., Reider, C. R. & Kay, A. Electrocardiography in epilepsy patients without cardiac symptoms. Seizure 2, 63–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Nei, M., Ho, R. T. & Sperling, M. R. EKG abnormalities during partial seizures in refractory epilepsy. Epilepsia 41, 542–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Tigaran, S. Cardiac abnormalities in patients with refractory epilepsy. Acta Neurol. Scand. Suppl. 177, 9–32 (2002).

    Article  PubMed  Google Scholar 

  51. Engel, G. et al. Electrocardiographic arrhythmia risk testing. Curr. Probl. Cardiol. 29, 365–432 (2004).

    Article  PubMed  Google Scholar 

  52. Surges, R. et al. Pathological cardiac repolarization in pharmacoresistant epilepsy and its potential role in sudden unexpected death in epilepsy: a case-control study. Epilepsia (in press).

  53. Akalin, F., Tirtir, A. & Yilmaz, Y. Increased QT dispersion in epileptic children. Acta Paediatr. 92, 916–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Keilson, M. J., Hauser, W. A. & Magrill, J. P. Electrocardiographic changes during electrographic seizures. Arch. Neurol. 46, 1169–1170 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Galimberti, C. A. et al. Partial epileptic seizures of different origin variably affect cardiac rhythm. Epilepsia 37, 742–747 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Opherk, C., Coromilas, J. & Hirsch, L. J. Heart rate and EKG changes in 102 seizures: analysis of influencing factors. Epilepsy Res. 52, 117–127 (2002).

    Article  PubMed  Google Scholar 

  57. Zijlmans, M., Flanagan, D. & Gotman, J. Heart rate changes and ECG abnormalities during epileptic seizures: prevalence and definition of an objective clinical sign. Epilepsia 43, 847–854 (2002).

    Article  PubMed  Google Scholar 

  58. Nei, M. et al. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia 45, 338–345 (2004).

    Article  PubMed  Google Scholar 

  59. Tigaran, S., Mølgaard, H., McClelland, R., Dam, M. & Jaffe, A. S. Evidence of cardiac ischemia during seizures in drug refractory epilepsy patients. Neurology 60, 492–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Alehan, F. et al. Elevated CK-MB mass and plasma brain-type natriuretic peptide concentrations following convulsive seizures in children and adolescents: possible evidence of subtle cardiac dysfunction. Epilepsia 50, 755–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Woodruff, B. K. et al. Cardiac troponin levels following monitored epileptic seizures. Neurology 60, 1690–1692 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Mameli, O. et al. Analysis of central cardioarrhythmogenic triggers in experimental epilepsy. Epilepsy Res. 7, 210–218 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Leung, H., Schindler, K., Kwan, P. & Elger, C. Asystole induced by electrical stimulation of the left cingulate gyrus. Epileptic Disord. 9, 77–81 (2007).

    PubMed  Google Scholar 

  64. Nashef, L. et al. Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy. J. Neurol. Neurosurg. Psychiatry 60, 297–300 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lindholm, P., Nordh, J. & Linnarsson, D. Role of hypoxemia for the cardiovascular responses to apnea during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, 1227–1235 (2002).

    Article  Google Scholar 

  66. Schernthaner, C., Lindinger, G., Pötzelberger, K., Zeiler, K. & Baumgartner, C. Autonomic epilepsy–the influence of epileptic discharges on heart rate and rhythm. Wien. Klin. Wochenschr. 111, 392–401 (1999).

    CAS  PubMed  Google Scholar 

  67. Rugg-Gunn, F. J., Simister, R. J., Squirrell, M., Holdright, D. R. & Duncan, J. S. Cardiac arrhythmias in focal epilepsy: a prospective long-term study. Lancet 364, 2212–2219 (2004).

    Article  PubMed  Google Scholar 

  68. Rocamora, R., Kurthen, M., Lickfett, L., Von Oertzen, J. & Elger, C. E. Cardiac asystole in epilepsy: clinical and neurophysiologic features. Epilepsia 44, 179–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Schuele, S. U. et al. Video-electrographic and clinical features in patients with ictal asystole. Neurology 69, 434–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Schuele, S. U., Bermeo, A. C., Locatelli, E., Burgess, R. C. & Lüders, H. O. Ictal asystole: a benign condition? Epilepsia 49, 168–171 (2008).

    Article  PubMed  Google Scholar 

  71. Schraeder, P. L. & Lathers, C. M. Cardiac neural discharge and epileptogenic activity in the cat: an animal model for unexplained death. Life Sci. 32, 1371–1382 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. Mameli, O., Caria, M. A., Pintus, A., Padua, G. & Mameli, S. Sudden death in epilepsy: an experimental animal model. Seizure 15, 275–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Sakamoto, K. et al. Autonomic consequences of kainic acid-induced limbic cortical seizures in rats: peripheral autonomic nerve activity, acute cardiovascular changes, and death. Epilepsia 49, 982–996 (2008).

    Article  PubMed  Google Scholar 

  74. Delgado, J. M., Mihailovic, L. & Sevillano, M. Cardiovascular phenomena during seizure activity. J. Nerv. Ment. Dis. 130, 477–487 (1960).

    Article  CAS  PubMed  Google Scholar 

  75. Oppenheimer, S. M., Wilson, J. X., Guiraudon, C. & Cechetto, D. F. Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death? Brain Res. 550, 115–121 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Oppenheimer, S. Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clin. Auton. Res. 16, 6–11 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  77. O'Regan, M. E. & Brown, J. K. Abnormalities in cardiac and respiratory function observed during seizures in childhood. Dev. Med. Child Neurol. 47, 4–9 (2005).

    Article  PubMed  Google Scholar 

  78. Morita, H., Wu, J. & Zipes, D. P. The QT syndromes: long and short. Lancet 372, 750–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Kändler, L. et al. Early post-convulsive prolongation of QT time in children. Acta Paediatr. 94, 1243–1247 (2005).

    Article  PubMed  Google Scholar 

  80. Tavernor, S. J., Brown, S. W., Tavernor, R. M. & Gifford, C. Electrocardiograph QT lengthening associated with epileptiform EEG discharges—a role in sudden unexplained death in epilepsy? Seizure 5, 79–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Kiely, D. G., Cargill, R. I. & Lipworth, B. J. Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 109, 1215–1221 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Roche, F. et al. Effect of acute hypoxia on QT rate dependence and corrected QT interval in healthy subjects. Am. J. Cardiol. 91, 916–919 (2003).

    Article  PubMed  Google Scholar 

  83. Simon, R. P., Aminoff, M. J. & Benowitz, N. L. Changes in plasma catecholamines after tonic-clonic seizures. Neurology 34, 255–257 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, S. et al. Effects of adrenaline and potassium on QTc interval and QT dispersion in man. Eur. J. Clin. Invest. 33, 93–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Schimpf, R., Borggrefe, M. & Wolpert, C. Clinical and molecular genetics of the short QT syndrome. Curr. Opin. Cardiol. 23, 192–198 (2008).

    Article  PubMed  Google Scholar 

  86. Extramiana, F. & Antzelevitch, C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation 110, 3661–3666 (2004).

    Article  PubMed  Google Scholar 

  87. Arrowood, J. A. et al. Modulation of the QT interval: effects of graded exercise and reflex cardiovascular stimulation. J. Appl. Physiol. 75, 2217–2223 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Holbrook, M., Malik, M., Shah, R. R. & Valentin, J. P. Drug induced shortening of the QT/QTc interval: an emerging safety issue warranting further modelling and evaluation in drug research and development? J. Pharmacol. Toxicol. Methods 59, 21–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Lipka, K. & Bülow, H. H. Lactic acidosis following convulsions. Acta Anaesthesiol. Scand. 47, 616–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Espinosa, P. S., Lee, J. W., Tedrow, U. B., Bromfield, E. B. & Dworetzky, B. A. Sudden unexpected near death in epilepsy: malignant arrhythmia from a partial seizure. Neurology 72, 1702–1703 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Kennebäck, G., Ericson, M., Tomson, T. & Bergfeldt, L. Changes in arrhythmia profile and heart rate variability during abrupt withdrawal of antiepileptic drugs. Implications for sudden death. Seizure 6, 369–375 (1997).

    Article  PubMed  Google Scholar 

  92. Hennessy, M. J., Tighe, M. G., Binnie, C. D. & Nashef, L. Sudden withdrawal of carbamazepine increases cardiac sympathetic activity in sleep. Neurology 57, 1650–1654 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. George, J. R. & Davis, G. G. Comparison of anti-epileptic drug levels in different cases of sudden death. J. Forensic Sci. 43, 598–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Opeskin, K., Burke, M. P., Cordner, S. M. & Berkovic, S. F. Comparison of antiepileptic drug levels in sudden unexpected deaths in epilepsy with deaths from other causes. Epilepsia 40, 1795–1798 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Boesen, F., Andersen, E. B., Jensen, E. K. & Ladefoged, S. D. Cardiac conduction disturbances during carbamazepine therapy. Acta Neurol. Scand. 68, 49–52 (1983).

    CAS  PubMed  Google Scholar 

  96. Surges, R., Volynski, K. E. & Walker, M. C. Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther. Adv. Neurol. Disord. 1, 13–24 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Saetre, E. et al. Cardiac function and antiepileptic drug treatment in the elderly: A comparison between lamotrigine and sustained-release carbamazepine. Epilepsia doi:10.1111/j.1528–11672009.0 2069.x.

  98. Danielsson, B. R., Lansdell, K., Patmore, L. & Tomson, T. Effects of the antiepileptic drugs lamotrigine, topiramate and gabapentin on hERG potassium currents. Epilepsy Res. 63, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Schouten, E. G. et al. QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation 84, 1516–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Aurlien, D., Taubøll, E. & Gjerstad, L. Lamotrigine in idiopathic epilepsy—increased risk of cardiac death? Acta Neurol. Scand. 115, 199–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Dixon, R. et al. Lamotrigine does not prolong QTc in a thorough QT/QTc study in healthy subjects. Br. J. Clin. Pharmacol. 66, 396–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeSilvey, D. L. & Moss, A. J. Primidone in the treatment of the long QT syndrome: QT shortening and ventricular arrhythmia suppression. Ann. Intern. Med. 93, 53–54 (1980).

    Article  CAS  PubMed  Google Scholar 

  103. Cheng-Hakimian, A., Anderson, G. D. & Miller, J. W. Rufinamide: pharmacology, clinical trials, and role in clinical practice. Int. J. Clin. Pract. 60, 1497–1501 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Jawad, S., Mercer, A., Jamil, N. & Richens, A. Haematological values of epileptic patients entering drug trials. Int. J. Clin. Pharmacol. Res. 8, 363–366 (1988).

    CAS  PubMed  Google Scholar 

  105. Hauser, E., Seidl, R., Freilinger, M., Male, C. & Herkner, K. Hematologic manifestations and impaired liver synthetic function during valproate monotherapy. Brain Dev. 18, 105–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Yuen, A. W. et al. Erythrocyte and plasma fatty acid profiles in patients with epilepsy: does carbamazepine affect omega-3 fatty acid concentrations? Epilepsy Behav. 12, 317–323 (2008).

    Article  PubMed  Google Scholar 

  107. Aurlien, D., Leren, T. P., Taubøll, E. & Gjerstad, L. New SCN5A mutation in a SUDEP victim with idiopathic epilepsy. Seizure 18, 158–160 (2009).

    Article  PubMed  Google Scholar 

  108. Pacia, S. V., Devinsky, O., Luciano, D. J. & Vazquez, B. The prolonged QT syndrome presenting as epilepsy: a report of two cases and literature review. Neurology 44, 1408–1410 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Johnson, J. N. et al. Identification of a possible pathogenic link between congenital long QT syndrome and epilepsy. Neurology 72, 224–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Berilgen, M. S., Sari, T., Bulut, S. & Mungen, B. Effects of epilepsy on autonomic nervous system and respiratory function tests. Epilepsy Behav. 5, 513–516 (2004).

    Article  PubMed  Google Scholar 

  111. Scorza, F. A. et al. Quantification of respiratory parameters in patients with temporal lobe epilepsy. Arq. Neuropsiquiatr. 65, 450–453 (2007).

    Article  PubMed  Google Scholar 

  112. Harvey, A. S. et al. Frontal lobe epilepsy: clinical seizure characteristics and localization with ictal 99mTc-HMPAO SPECT. Neurology 43, 1966–1980 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Foldvary, N. et al. Clinical and electrographic manifestations of lesional neocortical temporal lobe epilepsy. Neurology 49, 757–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Kaada, B. R., Pribram, K. H. & Epstein J. A. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus; a preliminary report. J. Neurophysiol. 12, 347–356 (1949).

    Article  CAS  PubMed  Google Scholar 

  115. Kaada, B. R. & Jasper, H. Respiratory responses to stimulation of temporal pole, insula, and hippocampal and limbic gyri in man. AMA Arch. Neurol. Psychiatry 68, 609–619 (1952).

    Article  CAS  PubMed  Google Scholar 

  116. So, E. L., Sam, M. C. & Lagerlund, T. L. Postictal central apnea as a cause of SUDEP: evidence from near-SUDEP incident. Epilepsia 41, 1494–1497 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Tavee, J. & Morris, H. 3rd. Severe postictal laryngospasm as a potential mechanism for sudden unexpected death in epilepsy: a near-miss in an EMU. Epilepsia 49, 2113–2117 (2008).

    Article  PubMed  Google Scholar 

  118. Bateman, L. M., Li, C. S. & Seyal, M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131, 3239–3245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Walker, F. & Fish, D. R. Recording of respiratory parameters in patients with epilepsy. Epilepsia 38 (Suppl. 11), S41–S42 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Blum, A. S. et al. Oxygen desaturations triggered by partial seizures: implications for cardiopulmonary instability in epilepsy. Epilepsia 41, 536–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Leestma, J. E., Walczak, T., Hughes, J. R., Kalelkar, M. B. & Teas, S. S. A prospective study on sudden unexpected death in epilepsy. Ann. Neurol. 26, 195–203 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Lear-Kaul, K. C., Coughlin, L. & Dobersen, M. J. Sudden unexpected death in epilepsy: a retrospective study. Am. J. Forensic Med. Pathol. 26, 11–17 (2005).

    Article  PubMed  Google Scholar 

  123. Baumann, A., Audibert, G., McDonnell, J. & Mertes, P. M. Neurogenic pulmonary edema. Acta Anaesthesiol. Scand. 51, 447–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Darnell, J. C. & Jay, S. J. Recurrent postictal pulmonary edema: a case report and review of the literature. Epilepsia 23, 71–83 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Johnston, S. C., Horn, J. K., Valente, J. & Simon, R. P. The role of hypoventilation in a sheep model of epileptic sudden death. Ann. Neurol. 37, 531–537 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Aminoff, M. J., Simon, R. P. & Wiedemann, E. The hormonal responses to generalized tonic–clonic seizures. Brain 107, 569–578 (1984).

    Article  PubMed  Google Scholar 

  127. Meierkord, H., Shorvon, S. & Lightman, S. L. Plasma concentrations of prolactin, noradrenaline, vasopressin and oxytocin during and after a prolonged epileptic seizure. Acta Neurol. Scand. 90, 73–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Magnaes, B. & Nornes, H. Circulatory and respiratory changes in spontaneous epileptic seizures in man. Eur. Neurol. 12, 104–111 (1974).

    Article  CAS  PubMed  Google Scholar 

  129. Sears, C. E., Noble, P., Noble, D. & Paterson, D. J. Vagal control of heart rate is modulated by extracellular potassium. J. Auton. Nerv. Syst. 77, 164–171 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Devinsky, O., Perrine, K. & Theodore, W. H. Interictal autonomic nervous system function in patients with epilepsy. Epilepsia 35, 199–204 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Ansakorpi, H. et al. Interictal cardiovascular autonomic responses in patients with temporal lobe epilepsy. Epilepsia 41, 42–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Sathyaprabha, T. N. et al. Cardiac autonomic dysfunction in chronic refractory epilepsy. Epilepsy Res. 72, 49–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Weinand, M. E. et al. Response of human epileptic temporal lobe cortical blood flow to hyperventilation. Epilepsy Res. 21, 221–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Oppenheimer, S. M., Gelb, A., Girvin, J. P. & Hachinski, V. C. Cardiovascular effects of human insular cortex stimulation. Neurology 42, 1727–1732 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Van Buren, J. M. Some autonomic concomitants of ictal automatism; a study of temporal lobe attacks. Brain 81, 505–528 (1958).

    Article  CAS  PubMed  Google Scholar 

  136. Duncan, R., Patterson, J., Roberts, R., Hadley, D. M. & Bone, I. Ictal/postictal SPECT in the pre-surgical localisation of complex partial seizures. J. Neurol. Neurosurg. Psychiatry 56, 141–148 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hascoet, J. M., Monin, P. & Vert, P. Persistence of impaired autoregulation of cerebral blood flow in the postictal period in piglets. Epilepsia 29, 743–747 (1988).

    Article  CAS  PubMed  Google Scholar 

  138. Bird, J. M., Dembny, K. A., Sandeman, D. & Butler, S. Sudden unexplained death in epilepsy: an intracranially monitored case. Epilepsia 38 (Suppl. 11), S52–S56 (1997).

    Article  Google Scholar 

  139. Lee, M. A. EEG video recording of sudden unexpected death in epilepsy (SUDEP). Epilepsia 39 (Suppl. 6), 123–124 (1998).

    Google Scholar 

  140. McLean, B. N. & Wimalaratna, S. Sudden death in epilepsy recorded in ambulatory EEG. J. Neurol. Neurosurg. Psychiatry 78, 1395–1397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wieling, W. et al. Symptoms and Signs of Syncope: a review of the link between physiology and clinical clues. Brain (in press).

  142. Saito, T., Sakamoto, K., Koizumi, K. & Stewart, M. Repeatable focal seizure suppression: a rat preparation to study consequences of seizure activity based on urethane anesthesia and reversible carotid artery occlusion. J. Neurosci. Methods 155, 241–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Fu, L. Y. & Moon, R. Y. Apparent life-threatening events (ALTEs) and the role of home monitors. Pediatr. Rev. 28, 203–208 (2007).

    Article  PubMed  Google Scholar 

  144. Lathers, C. M., Stauffer, A. Z., Tumer, N., Kraras, C. M. & Goldman, B. D. Anticonvulsant and antiarrhythmic actions of the beta blocking agent timolol. Epilepsy Res. 4, 42–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  145. Mayer, T. & Specht, U. Propranolol in startle induced epileptic seizures. J. Neurol. Neurosurg. Psychiatry 58, 382–383 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fischer, W. Anticonvulsant profile and mechanism of action of propranolol and its two enantiomers. Seizure 11, 285–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Tupal, S. & Faingold, C. L. Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia 47, 21–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Favale, E., Rubino, V., Mainardi, P., Lunardi, G. & Albano, C. Anticonvulsant effect of fluoxetine in humans. Neurology 45, 1926–1927 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Levine, R., Kenin, M., Hoffman, J. S. & Day-Knepple, E. Grand mal seizures associated with the use of fluoxetine. J. Clin. Psychopharmacol. 14, 145–146 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Nemeroff, C. B., DeVane, C. L. & Pollock, B. G. Newer antidepressants and the cytochrome P450 system. Am. J. Psychiatry 153, 311–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Brodie, M. J. & Holmes, G. L. Should all patients be told about sudden unexpected death in epilepsy (SUDEP)? Pros and Cons. Epilepsia 49 (Suppl. 9), 99–101 (2008).

    Article  PubMed  Google Scholar 

  153. Tan, H. L., Hofman, N., van Langen, I. M., van der Wal, A. C. & Wilde, A. A. Sudden unexplained death: heritability and diagnostic yield of cardiologic and genetic examination in surviving relatives. Circulation 112, 207–213 (2005).

    Article  PubMed  Google Scholar 

  154. Doherty, M. J. The sudden death of Patsy Custis, or George Washington on sudden unexplained death in epilepsy. Epilepsy Behav. 5, 598–600 (2004).

    Article  PubMed  Google Scholar 

  155. Williams, J. et al. Variability of antiepileptic medication taking behaviour in sudden unexplained death in epilepsy: hair analysis at autopsy. J. Neurol. Neurosurg. Psychiatry 77, 481–484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jick, S. S., Cole, T. B., Mesher, R. A., Tennis, P. & Jick, H. Sudden unexplained death in young persons with primary epilepsy. Pharmacoepidemiol. Drug Safety 1, 59–64 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

R. Surges and J. W. Sander are based at University College London (UCL) and UCL Hospitals NHS Trust, which receive a proportion of their funding from the Department of Health's National Institute for Health Research Biomedical Research Centres funding scheme. J. W. Sander is partly supported by the Marvin Weil Epilepsy Research Fund. R. D. Thijs is supported by the Dutch Epilepsy Foundation. H. L. Tan is supported by the Royal Netherlands Academy of Arts and Sciences and the Netherlands Organization for Scientific Research (grant ZonMW-Vici 918.86.616). Charles P. Vega, University of California, Irvine, CA is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josemir W. Sander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surges, R., Thijs, R., Tan, H. et al. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol 5, 492–504 (2009). https://doi.org/10.1038/nrneurol.2009.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing