Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell–matrix adhesion of podocytes in physiology and disease

Abstract

Cell–matrix adhesion is crucial for maintaining the mechanical integrity of epithelial tissues. Podocytes—a key component of the glomerular filtration barrier—are exposed to permanent transcapillary filtration pressure and must therefore adhere tightly to the underlying glomerular basement membrane (GBM). The major cell–matrix adhesion receptor in podocytes is the integrin α3β1, which connects laminin 521 in the GBM through various adaptor proteins to the intracellular actin cytoskeleton. Other cell–matrix adhesion receptors expressed by podocytes include the integrins α2β1 and αvβ3, α-dystroglycan, syndecan-4 and type XVII collagen. Mutations in genes encoding any of the components critical for podocyte adhesion cause glomerular disease. This Review highlights recent advances in our understanding of the cell biology and genetics of podocyte adhesion with special emphasis on glomerular disease.

Key Points

  • Podocytes are constantly exposed to mechanical stress; therefore, strong adhesion of podocytes to the glomerular basement membrane (GBM) is required for blood ultrafiltration

  • Podocyte adhesions to the GBM are mediated by transmembrane receptors, such as integrin α3β1, which link extracellular GBM proteins to the intracellular cytoskeleton

  • Mutations in components that mediate podocyte–matrix adhesions may cause glomerular disease characterized by GBM abnormalities, podocyte foot process effacement, and proteinuria

  • Glomerular disease caused by defective podocyte adhesion might be ameliorated by drugs that decrease transcapillary filtration pressure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteins involved in podocyte adhesion and the diseases associated with mutation of their coding genes.

Similar content being viewed by others

References

  1. Haraldsson, B. & Jeansson, M. Glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 18, 331–335 (2009).

    Article  PubMed  Google Scholar 

  2. Huber, T. B. & Benzing, T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr. Opin. Nephrol. Hypertens. 14, 211–216 (2005).

    Article  PubMed  Google Scholar 

  3. Chen, Y. M. & Miner, J. H. Glomerular basement membrane and related glomerular disease. Transl. Res. 160, 291–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Timpl, R. Structure and biological activity of basement membrane proteins. Eur. J. Biochem. 180, 487–502 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Miner, J. H. The glomerular basement membrane. Exp. Cell Res. 318, 973–978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abrahamson, D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J. Cell Biol. 100, 1988–2000 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Walker, F. The origin, turnover and removal of glomerular basement-membrane. J. Pathol. 110, 233–244 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Abrahamson, D. R., Hudson, B. G., Stroganova, L., Borza, D. B. & St John, P. L. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 20, 1471–1479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Durbeej, M. et al. Expression of laminin alpha 1, alpha 5 and beta 2 chains during embryogenesis of the kidney and vasculature. Matrix Biol. 15, 397–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Miner, J. H. & Sanes, J. R. Collagen IV alpha 3, alpha 4, and alpha 5 chains in rodent basal laminae: sequence, distribution, association with laminins, and developmental switches. J. Cell Biol. 127, 879–891 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Miner, J. H. et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J. Cell Biol. 137, 685–701 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davies, M., Martin, J., Thomas, G. J. & Lovett, D. H. Proteinases and glomerular matrix turnover. Kidney Int. 41, 671–678 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Barker, D. F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lemmink, H. H. et al. Mutations in the type IV collagen alpha 3 (COL4A3) gene in autosomal recessive Alport syndrome. Hum. Mol. Genet. 3, 1269–1273 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Mochizuki, T. et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 8, 77–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Spear, G. S. & Slusser, R. J. Alport's syndrome. Emphasizing electron microscopic studies of the glomerulus. Am. J. Pathol. 69, 213–224 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalluri, R., Shield, C. F., Todd, P., Hudson, B. G. & Neilson, E. G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Invest. 99, 2470–2478 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meehan, D. T. et al. Biomechanical strain causes maladaptive gene regulation, contributing to Alport glomerular disease. Kidney Int. 76, 968–976 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grodecki, K. M. et al. Treatment of X-linked hereditary nephritis in Samoyed dogs with angiotensin converting enzyme (ACE) inhibitor. J. Comp. Pathol. 117, 209–225 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Gross, O. et al. Preemptive ramipril therapy delays renal failure and reduces renal fibrosis in COL4A3-knockout mice with Alport syndrome. Kidney Int. 63, 438–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 81, 494–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Shannon, M. B., Patton, B. L., Harvey, S. J. & Miner, J. H. A hypomorphic mutation in the mouse laminin alpha5 gene causes polycystic kidney disease. J. Am. Soc. Nephrol. 17, 1913–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg, S., Adair-Kirk, T. L., Senior, R. M. & Miner, J. H. Maintenance of glomerular filtration barrier integrity requires laminin alpha5. J. Am. Soc. Nephrol. 21, 579–586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kikkawa, Y. & Miner, J. H. Molecular dissection of laminin alpha 5 in vivo reveals separable domain-specific roles in embryonic development and kidney function. Dev. Biol. 296, 265–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Ido, H. et al. Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J. Biol. Chem. 279, 10946–10954 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kikkawa, Y. et al. The LG1–3 tandem of laminin alpha5 harbors the binding sites of Lutheran/basal cell adhesion molecule and alpha3beta1/alpha6beta1 integrins. J. Biol. Chem. 282, 14853–14860 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Yu, H. & Talts, J. F. Beta1 integrin and alpha-dystroglycan binding sites are localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 chain G domain. Biochem. J. 371, 289–299 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matejas, V. et al. Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum. Mutat. 31, 992–1002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Noakes, P. G. et al. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat. Genet. 10, 400–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Pierson, M., Cordier, J., Hervouet, F. & Rauber, G. Une curieuse association malformative congenitale et familiale atteignant l'oeil et le rein. J. Genet. Hum. 12, 184–213 (1963).

    CAS  PubMed  Google Scholar 

  32. Zenker, M. et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Zenker, M., Pierson, M., Jonveaux, P. & Reis, A. Demonstration of two novel LAMB2 mutations in the original Pierson syndrome family reported 42 years ago. Am. J. Med. Genet. A 138, 73–74 (2005).

    Article  PubMed  Google Scholar 

  34. Jarad, G., Cunningham, J., Shaw, A. S. & Miner, J. H. Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J. Clin. Invest. 116, 2272–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suh, J. H., Jarad, G., VanDeVoorde, R. G. & Miner, J. H. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome. Proc. Natl Acad. Sci. USA 108, 15348–15353 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bader, B. L. et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol. Cell Biol. 25, 6846–6856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murshed, M. et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol. Cell Biol. 20, 7007–7012 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schymeinsky, J. et al. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. Mol. Cell Biol. 22, 6820–6830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fox, J. W. et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 10, 3137–3146 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salmivirta, K. et al. Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp. Cell Res. 279, 188–201 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Agostoni, E. Volume-pressure relationships of the thorax and lung in the newborn. J. Appl. Physiol. 14, 909–913 (1959).

    Article  CAS  PubMed  Google Scholar 

  42. Iozzo, R. V. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Invest. 108, 165–167 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schaefer, L. & Schaefer, R. M. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339, 237–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kanwar, Y. S. & Farquhar, M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc. Natl Acad. Sci. USA 76, 4493–4497 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanwar, Y. S. & Farquhar, M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl Acad. Sci. USA 76, 1303–1307 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanwar, Y. S., Linker, A. & Farquhar, M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86, 688–693 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Zcharia, E. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J. 18, 252–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, S. et al. Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 74, 289–299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McCormick, C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat. Genet. 19, 158–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. McCarthy, K. J. & Wassenhove-McCarthy, D. J. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. Microsc. Microanal. 18, 3–21 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harvey, S. J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am. J. Pathol. 171, 139–152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nat. Genet. 23, 354–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K. & Miner, J. H. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol. Dial. Transplant. 24, 2044–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kinnunen, A. I. et al. Lack of collagen XVIII long isoforms affects kidney podocytes, whereas the short form is needed in the proximal tubular basement membrane. J. Biol. Chem. 286, 7755–7764 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Korhonen, M., Ylanne, J., Laitinen, L. & Virtanen, I. The alpha 1-alpha 6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol. 111, 1245–1254 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Korhonen, M., Laitinen, L., Ylanne, J., Gould, V. E. & Virtanen, I. Integrins in developing, normal and malignant human kidney. Kidney Int. 41, 641–644 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Durbeej, M., Henry, M. D., Ferletta, M., Campbell, K. P. & Ekblom, P. Distribution of dystroglycan in normal adult mouse tissues. J. Histochem. Cytochem. 46, 449–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Bjornson, G. A. et al. Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am. J. Physiol. Renal Physiol. 291, F722–F730 (2006).

    Article  CAS  Google Scholar 

  61. Cevikbas, F. et al. Unilateral nephrectomy leads to up-regulation of syndecan-2- and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol. 27, 42–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pyke, C., Kristensen, P., Ostergaard, P. B., Oturai, P. S. & Romer, J. Proteoglycan expression in the normal rat kidney. Nephron 77, 461–470 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Hurskainen, T. et al. Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell Tissue Res. 348, 579–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Barczyk, M., Carracedo, S. & Gullberg, D. Integrins. Cell Tissue Res. 339, 269–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Margadant, C., Monsuur, H. N., Norman, J. C. & Sonnenberg, A. Mechanisms of integrin activation and trafficking. Curr. Opin. Cell Biol. 23, 607–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Woods, A. & Couchman, J. R. Integrin modulation by lateral association. J. Biol. Chem. 275, 24233–24236 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3 (2011).

  69. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patla, I. et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat. Cell Biol. 12, 909–915 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Baraldi, A. et al. Very late activation-3 integrin is the dominant beta 1-integrin on the glomerular capillary wall: an immunofluorescence study in nephrotic syndrome. Nephron 62, 382–388 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Baraldi, A. et al. Beta-1 integrins in the normal human glomerular capillary wall: an immunoelectron microscopy study. Nephron 66, 295–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Sterk, L. M. et al. Glomerular extracellular matrix components and integrins. Cell Adhes. Commun. 5, 177–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Kreidberg, J. A. et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    CAS  PubMed  Google Scholar 

  75. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Has, C. et al. Integrin alpha3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicolaou, N. et al. Gain-of-glycosylation impairs heterodimerization and maturation of alpha3beta1 and causes interstitial lung disease and congenital nephrotic syndrome. J. Clin. Invest. 122, 4375–4387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fassler, R. & Meyer, M. Consequences of lack of beta 1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Kanasaki, K. et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Girgert, R. et al. Integrin alpha2-deficient mice provide insights into specific functions of collagen receptors in the kidney. Fibrogenesis Tissue Repair 3, 19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borza, C. M. et al. Inhibition of integrin alpha2beta1 ameliorates glomerular injury. J. Am. Soc. Nephrol. 23, 1027–1038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Berditchevski, F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci. 114, 4143–4151 (2001).

    CAS  PubMed  Google Scholar 

  84. Hemler, M. E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Yauch, R. L., Berditchevski, F., Harler, M. B., Reichner, J. & Hemler, M. E. Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol. Biol. Cell 9, 2751–2765 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sachs, N. et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J. Clin. Invest. 122, 348–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Sterk, L. M. et al. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J. Cell Sci. 115, 1161–1173 (2002).

    CAS  PubMed  Google Scholar 

  88. Karamatic, C. V. et al. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104, 2217–2223 (2004).

    Article  CAS  Google Scholar 

  89. Baleato, R. M., Guthrie, P. L., Gubler, M. C., Ashman, L. K. & Roselli, S. Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am. J. Pathol. 173, 927–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nishiuchi, R. et al. Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc. Natl Acad. Sci. USA 102, 1939–1944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yauch, R. L., Kazarov, A. R., Desai, B., Lee, R. T. & Hemler, M. E. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J. Biol. Chem. 275, 9230–9238 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Takeda, Y. et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109, 1524–1532 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dworkin, L. D., Benstein, J. A., Parker, M., Tolbert, E. & Feiner, H. D. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms. Kidney Int. 43, 808–814 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Hartner, A., Schocklmann, H., Prols, F., Muller, U. & Sterzel, R. B. Alpha8 integrin in glomerular mesangial cells and in experimental glomerulonephritis. Kidney Int. 56, 1468–1480 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Mayer, G., Boileau, G. & Bendayan, M. Furin interacts with proMT1-MMP and integrin alphaV at specialized domains of renal cell plasma membrane. J. Cell Sci. 116, 1763–1773 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Roy-Chaudhury, P., Hillis, G., McDonald, S., Simpson, J. G. & Power, D. A. Importance of the tubulointerstitium in human glomerulonephritis. II. Distribution of integrin chains beta 1, alpha 1 to 6 and alpha V. Kidney Int. 52, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Bader, B. L., Rayburn, H., Crowley, D. & Hynes, R. O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95, 507–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Hodivala-Dilke, K. M. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng, X., Saunders, T. L., Camper, S. A., Samuelson, L. C. & Ginsburg, D. Vitronectin is not essential for normal mammalian development and fertility. Proc. Natl Acad. Sci. USA 92, 12426–12430 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Borza, C. M. et al. Human podocytes adhere to the KRGDS motif of the alpha3alpha4alpha5 collagen IV network. J. Am. Soc. Nephrol. 19, 677–684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bitzan, M., Babayeva, S., Vasudevan, A., Goodyer, P. & Torban, E. TNFalpha pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and beta3 integrin activation. Pediatr. Nephrol. 27, 2217–2226 (2012).

    Article  PubMed  Google Scholar 

  104. Hayashida, T., Jones, J. C., Lee, C. K. & Schnaper, H. W. Loss of beta1-integrin enhances TGF-beta1-induced collagen expression in epithelial cells via increased alphavbeta3-integrin and Rac1 activity. J. Biol. Chem. 285, 30741–30751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schordan, S., Schordan, E., Endlich, K. & Endlich, N. AlphaV-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am. J. Physiol. Renal Physiol. 300, F119–F132 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Katsumi, A., Naoe, T., Matsushita, T., Kaibuchi, K. & Schwartz, M. A. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J. Biol. Chem. 280, 16546–16549 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Regele, H. M. et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 11, 403–412 (2000).

    CAS  PubMed  Google Scholar 

  110. Giannico, G., Yang, H., Neilson, E. G. & Fogo, A. B. Dystroglycan in the diagnosis of FSGS. Clin. J. Am. Soc. Nephrol. 4, 1747–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Williamson, R. A. et al. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Kojima, K. et al. Defective glycosylation of alpha-dystroglycan contributes to podocyte flattening. Kidney Int. 79, 311–316 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Jarad, G., Pippin, J. W., Shankland, S. J., Kreidberg, J. A. & Miner, J. H. Dystroglycan does not contribute significantly to kidney development or function, in health or after injury. Am. J. Physiol. Renal Physiol. 300, F811–F820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, S. et al. Podocytes require the engagement of cell surface heparan sulfate proteoglycans for adhesion to extracellular matrices. Kidney Int. 78, 1088–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morgan, M. R., Humphries, M. J. & Bass, M. D. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alexander, C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat. Genet. 25, 329–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Rops, A. L. et al. Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int. 72, 1204–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Aikawa, T. et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J. Clin. Invest. 118, 89–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Hintner, H. & Wolff, K. Generalized atrophic benign epidermolysis bullosa. Arch. Dermatol. 118, 375–384 (1982).

    Article  CAS  PubMed  Google Scholar 

  120. McGrath, J. A. et al. Mutations in the 180-kD bullous pemphigoid antigen (BPAG2), a hemidesmosomal transmembrane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat. Genet. 11, 83–86 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Nishie, W. et al. Humanization of autoantigen. Nat. Med. 13, 378–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Baker, E. L. & Zaman, M. H. The biomechanical integrin. J. Biomech. 43, 38–44 (2010).

    Article  PubMed  Google Scholar 

  123. Wang, N. et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98, 7765–7770 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schaller, M. D. et al. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl Acad. Sci. USA 89, 5192–5196 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Schaller, M. D. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci. 123, 1007–1013 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Tomar, A. & Schlaepfer, D. D. Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr. Opin. Cell Biol. 21, 676–683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Ma, H. et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J. Am. Soc. Nephrol. 21, 1145–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. George, B. et al. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J. Clin. Invest. 122, 674–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K. & Garcia, A. J. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol. Biol. Cell 20, 2508–2519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hannigan, G. E. et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379, 91–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Fukuda, K., Knight, J. D., Piszczek, G., Kothary, R. & Qin, J. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J. Biol. Chem. 286, 21886–21895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hannigan, G. E., McDonald, P. C., Walsh, M. P. & Dedhar, S. Integrin-linked kinase: not so 'pseudo' after all. Oncogene 30, 4375–4385 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Qin, J. & Wu, C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr. Opin. Cell Biol. 24, 607–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, S. et al. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage. J. Cell Sci. 118, 2913–2921 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Sakai, T. et al. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev. 17, 926–940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Guo, L., Sanders, P. W., Woods, A. & Wu, C. The distribution and regulation of integrin-linked kinase in normal and diabetic kidneys. Am. J. Pathol. 159, 1735–1742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kretzler, M. et al. Integrin-linked kinase as a candidate downstream effector in proteinuria. FASEB J. 15, 1843–1845 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Matsuura, S. et al. Expression of focal adhesion proteins in the developing rat kidney. J. Histochem. Cytochem. 59, 864–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Teixeira, V. P. et al. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int. 67, 514–523 (2005).

    Article  CAS  Google Scholar 

  144. Dai, C. et al. Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. J. Am. Soc. Nephrol. 17, 2164–2175 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Postel, R., Vakeel, P., Topczewski, J., Knoll, R. & Bakkers, J. Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex. Dev. Biol. 318, 92–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Tu, Y., Wu, S., Shi, X., Chen, K. & Wu, C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Margadant, C., Kreft, M., de Groot, D. J., Norman, J. C. & Sonnenberg, A. Distinct roles of talin and kindlin in regulating integrin alpha5beta1 function and trafficking. Curr. Biol. 22, 1554–1563 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Bottcher, R. T. et al. Sorting nexin 17 prevents lysosomal degradation of beta1 integrins by binding to the beta1-integrin tail. Nat. Cell Biol. 14, 584–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Steinberg, F., Heesom, K. J., Bass, M. D. & Cullen, P. J. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J. Cell Biol. 197, 219–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Larjava, H., Plow, E. F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Meves, A., Stremmel, C., Gottschalk, K. & Fassler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 19, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Jobard, F. et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925–935 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Svensson, L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat. Med. 15, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ussar, S., Wang, H. V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shi, X. et al. The MIG-2/integrin interaction strengthens cell-matrix adhesion and modulates cell motility. J. Biol. Chem. 282, 20455–20466 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dowling, J. J. et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ. Res. 102, 423–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Otey, C. A., Pavalko, F. M. & Burridge, K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J. Cell Biol. 111, 721–729 (1990).

    Article  CAS  PubMed  Google Scholar 

  162. Knudsen, K. A., Soler, A. P., Johnson, K. R. & Wheelock, M. J. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J. Cell Biol. 130, 67–77 (1995).

    Article  CAS  PubMed  Google Scholar 

  163. Otey, C. A. & Carpen, O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton 58, 104–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Drenckhahn, D. & Franke, R. P. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab. Invest. 59, 673–682 (1988).

    CAS  PubMed  Google Scholar 

  165. Smoyer, W. E., Mundel, P., Gupta, A. & Welsh, M. J. Podocyte alpha-actinin induction precedes foot process effacement in experimental nephrotic syndrome. Am. J. Physiol. 273, F150–F157 (1997).

    CAS  PubMed  Google Scholar 

  166. Shirato, I., Sakai, T., Kimura, K., Tomino, Y. & Kriz, W. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am. J. Pathol. 148, 1283–1296 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kos, C. H. et al. Mice deficient in alpha-actinin-4 have severe glomerular disease. J. Clin. Invest. 111, 1683–1690 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Goode, N. P., Shires, M., Khan, T. N. & Mooney, A. F. Expression of alpha-actinin-4 in acquired human nephrotic syndrome: a quantitative immunoelectron microscopy study. Nephrol. Dial. Transplant. 19, 844–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Weins, A. et al. Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc. Natl Acad. Sci. USA 104, 16080–16085 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kaplan, J. M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Henderson, J. M., Al-Waheeb, S., Weins, A., Dandapani, S. V. & Pollak, M. R. Mice with altered alpha-actinin-4 expression have distinct morphologic patterns of glomerular disease. Kidney Int. 73, 741–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Michaud, J. L. et al. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4. J. Am. Soc. Nephrol. 14, 1200–1211 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Dandapani, S. V. et al. Alpha-actinin-4 is required for normal podocyte adhesion. J. Biol. Chem. 282, 467–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Kim, J. H., Mukherjee, A., Madhavan, S. M., Konieczkowski, M. & Sedor, J. R. WT1-interacting protein (Wtip) regulates podocyte phenotype by cell-cell and cell-matrix contact reorganization. Am. J. Physiol. Renal Physiol. 302, F103–F115 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Perisic, L. et al. Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics. Kidney Int. 82, 1071–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Patrakka, J. et al. Expression and subcellular distribution of novel glomerulus-associated proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. J. Am. Soc. Nephrol. 18, 689–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Shibanuma, M., Mori, K., Kim-Kaneyama, J. R. & Nose, K. Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5. Antioxid. Redox. Signal. 7, 335–347 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Osada, M. et al. Involvement of Hic-5 in platelet activation: integrin alphaIIbbeta3-dependent tyrosine phosphorylation and association with proline-rich tyrosine kinase 2. Biochem. J. 355, 691–697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Welsh, G. I. & Saleem, M. A. The podocyte cytoskeleton--key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 8, 14–21 (2012).

    Article  CAS  Google Scholar 

  180. Cortes, P. et al. F-actin fiber distribution in glomerular cells: structural and functional implications. Kidney Int. 58, 2452–2461 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Wehrle-Haller, B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 24, 116–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Saleem, M. A. et al. The molecular and functional phenotype of glomerular podocytes reveals key features of contractile smooth muscle cells. Am. J. Physiol Renal Physiol. 295, F959–F970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chase, S. E. et al. Podocyte-specific knockout of myosin 1e disrupts glomerular filtration. Am. J. Physiol Renal Physiol. 303, F1099–F1106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sanna-Cherchi, S. et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int. 80, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Johnstone, D. B. et al. Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol. Cell Biol. 31, 2162–2170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Epstein, C. J. et al. Hereditary macrothrombocytopathia, nephritis and deafness. Am. J. Med. 52, 299–310 (1972).

    Article  CAS  PubMed  Google Scholar 

  189. Heath, K. E. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am. J. Hum. Genet. 69, 1033–1045 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Peterson, L. C., Rao, K. V., Crosson, J. T. & White, J. G. Fechtner syndrome--a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia. Blood 65, 397–406 (1985).

    CAS  PubMed  Google Scholar 

  191. Friedrich, C., Endlich, N., Kriz, W. & Endlich, K. Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Renal Physiol. 291, F856–F865 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Endlich, N. et al. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422 (2001).

    CAS  PubMed  Google Scholar 

  194. Ziembicki, J. et al. Mechanical force-activated phospholipase D is mediated by Galpha12/13-Rho and calmodulin-dependent kinase in renal epithelial cells. Am. J. Physiol. Renal Physiol. 289, F826–F834 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Kanda, T. et al. Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int. 64, 2009–2019 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Koshikawa, S., Nishikimi, T., Inaba, C., Akimoto, K. & Matsuoka, H. Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats. J. Hypertens. 26, 1837–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Ishikawa, Y. et al. Long-term administration of rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension 47, 1075–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Sun, G. P. et al. Involvements of Rho-kinase and TGF-beta pathways in aldosterone-induced renal injury. J. Am. Soc. Nephrol. 17, 2193–2201 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Sakurai, N. et al. Fluvastatin prevents podocyte injury in a murine model of HIV-associated nephropathy. Nephrol. Dial. Transplant. 24, 2378–2383 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Hidaka, T. et al. Amelioration of crescentic glomerulonephritis by RhoA kinase inhibitor, Fasudil, through podocyte protection and prevention of leukocyte migration. Am. J. Pathol. 172, 603–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, L. et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 81, 1075–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Scott, R. P. et al. Podocyte-specific loss of cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Schiffrin, E. L. Reactivity of small blood vessels in hypertension: relation with structural changes. State of the art lecture. Hypertension 19, II1–II9 (1992).

    Article  CAS  PubMed  Google Scholar 

  206. Robling, A. G. & Turner, C. H. Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 19, 319–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chiquet, M., Renedo, A. S., Huber, F. & Fluck, M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22, 73–80 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is supported by grants from the Dutch Kidney Foundation and the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

N. Sachs researched data for the article, contributed substantially to the discussion of content and wrote the article. A. Sonnenberg contributed substantially to the discussion of content, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Arnoud Sonnenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachs, N., Sonnenberg, A. Cell–matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 9, 200–210 (2013). https://doi.org/10.1038/nrneph.2012.291

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing