Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heat shock factors: integrators of cell stress, development and lifespan

Key Points

  • Heat shock factors (HSFs) are essential for all organisms to survive exposures to stress, as they bind heat shock elements to induce transcription of heat shock proteins (HSPs). In addition, the HSFs are important regulators involved in development, lifespan and disease, thereby integrating pathways of stress responses and normal physiology.

  • The mammalian HSF family consists of four members: HSF1, HSF2, HSF3 and HSF4. Distinct HSFs possess unique and overlapping functions, with a great variation in expression patterns, post-translational modifications (PTMs) and interacting protein partners.

  • HSFs are composed of functional domains, of which the DNA-binding domain is best preserved. The HSF1 activation–attenuation cycle involves trimerization, strict regulation by multiple PTMs, such as acetylation, phosphorylation and sumoylation, and feedback from HSPs.

  • Functional crosstalk between HSF family members facilitates the fine-tuning of HSF-mediated gene regulation. HSF-knockout mouse models have made it possible to identify many targets, which have further extended the impact of HSFs in developmental processes, such as oogenesis, corticogenesis and spermatogenesis.

  • The ability to sense and respond to environmental challenges is important for lifespan, and HSF1 is a longevity factor that prevents global instability of the proteome during ageing. The life-promoting function of HSF1 is strictly controlled by the insulin and insulin-like signalling pathway in Caenorhabditis elegans.

  • HSF1 is a potent modifier of tumorigenesis and HSF1 deficiency in mice counteracts tumour initiation and progression. HSF1 is therefore a potential cancer drug target. As many human, age-related pathologies are associated with stress and misfolded proteins, several small-molecule activators and inhibitors of HSFs could be used for pharmacologic modulation of HSF-mediated gene regulation.

Abstract

Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian HSF machinery.
Figure 2: Members of the mammalian HSF family.
Figure 3: HSF1 undergoes multiple PTMs on activation.
Figure 4: Interactions between different HSFs provide distinct functional modes in transcriptional regulation.

References

  1. Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia 18, 571–573 (1962).

    Article  CAS  Google Scholar 

  2. Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Pelham, H. R. B. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30, 517–528 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, C. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311, 81–84 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Parker, C. S. & Topol, J. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37, 273–283 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Åkerfelt, M., Trouillet, D., Mezger, V. & Sistonen, L. Heat shock factors at a crossroad between stress and development. Ann. N. Y. Acad. Sci. 1113, 15–27 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Nover, L. et al. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6, 177–189 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anckar, J. & Sistonen, L. Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv. Exp. Med. Biol. 594, 78–88 (2007).

    Article  PubMed  Google Scholar 

  10. Fujimoto, M. et al. A novel mouse HSF3 has the potential to activate nonclassical heat-shock genes during heat shock. Mol. Biol. Cell 21, 106–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W. & Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. McMillan, D. R., Xiao, X., Shao, L., Graves, K. & Benjamin, I. J. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523–7528 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Xiao, X. et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943–5952 (1999). Generation of the first HSF-knockout mouse, Hsf1−/−, revealing the physiological function of HSF1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pirkkala, L., Alastalo, T.-P., Zuo, X., Benjamin, I. J. & Sistonen, L. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20, 2670–2675 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y., Huang, L., Zhang, J., Moskophidis, D. & Mivechi, N. F. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J. Cell. Biochem. 86, 376–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Fiorenza, M. T., Farkas, T., Dissing, M., Kolding, D. & Zimarino, V. Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 23, 467–474 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goodson, M. L. & Sarge, K. D. Heat-inducible DNA binding of purified heat shock transcription factor 1. J. Biol. Chem. 270, 2447–2450 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Larson, J. S., Schuetz, T. J. & Kingston, R. E. In vitro activation of purified human heat shock factor by heat. Biochemistry 34, 1902–1911 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Zhong, M., Orosz, A. & Wu, C. Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol. Cell 2, 101–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Damberger, F. F., Pelton, J. G., Harrison, C. J., Nelson, H. C. M. & Wemmer, D. E. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy. Protein Sci. 3, 1806–1821 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harrison, C. J., Bohm, A. A. & Nelson, H. C. M. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263, 224–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Vuister, G. W. et al. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nature Struct. Biol. 1, 605–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Littlefield, O. & Nelson, H. C. M. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal. Nature Struct. Biol. 6, 464–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Bulman, A. L., Hubl, S. T. & Nelson, H. C. M. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains. J. Biol. Chem. 276, 40254–40262 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Sorger, P. K. & Nelson, H. C. M. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59, 807–813 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Y., Barlev, N. A., Westergaard, O. & Jakobsen, B. K. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J. 12, 5007–5018 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. & Wu, C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Nakai, A. et al. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469–481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanabe, M. et al. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J. Biol. Chem. 274, 27845–27856 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Nieto-Sotelo, J., Wiederrecht, G., Okuda, A. & Parker, C. S. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62, 807–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Sorger, P. K. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62, 793–805 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Green, M., Schuetz, T. J., Sullivan, E. K. & Kingston, R. E. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol. Cell. Biol. 15, 3354–3362 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newton, E. M., Knauf, U., Green, M. & Kingston, R. E. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol. Cell. Biol. 16, 839–846 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hensold, J. O., Hunt, C. R., Calderwood, S. K., Housman, D. E. & Kingston, R. E. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol. Cell. Biol. 10, 1600–1608 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jurivich, D. A., Sistonen, L., Kroes, R. A. & Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, Y., Kroeger, P. E. & Morimoto, R. I. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol. Cell. Biol. 15, 4309–4318 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuo, J., Rungger, D. & Voellmy, R. Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15, 4319–4330 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holmberg, C. I. et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 20, 3800–3810 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol. 23, 2953–2968 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 45–50 (2006). Discovery of a motif for phosphorylation-dependent sumoylation, called PDSM, that is present in the regulatory domain of HSF1 and HSF4.

    Article  CAS  PubMed  Google Scholar 

  41. Guettouche, T., Boellmann, F., Lane, W. S. & Voellmy, R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Westerheide, S. D., Anckar, J., Stevens, S. M., Jr, Sistonen, L. & Morimoto, R. I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063–1066 (2009). Describes the mechanism of SIRT1-mediated deacetylation of HSF1, which maintains HSF1 in a state that is competent for DNA binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baler, R., Dahl, G. & Voellmy, R. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13, 2486–2496 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarge, K. D., Murphy, S. P. & Morimoto, R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ali, A., Bharadwaj, S., O'Carroll, R. & Ovsenek, N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell. Biol. 18, 4949–4960 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  PubMed  Google Scholar 

  48. Duina, A. A., Kalton, H. M. & Gaber, R. F. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273, 18974–18978 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Zou, J., Salminen, W. F., Roberts, S. M. & Voellmy, R. Correlation between glutathione oxidation and trimerization of heat shock factor 1, an early step in stress induction of the Hsp response. Cell Stress Chaperones 3, 130–141 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bharadwaj, S., Ali, A. & Ovsenek, N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol. 19, 8033–8041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo, Y. et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276, 45791–45799 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, Y., Mosser, D. D. & Morimoto, R. I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654–666 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abravaya, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6, 1153–1164 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Baler, R., Welch, W. J. & Voellmy, R. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117, 1151–1159 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Shamovsky, I., Ivannikov, M., Kandel, E. S., Gershon, D. & Nudler, E. RNA-mediated response to heat shock in mammalian cells. Nature 440, 556–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. & Calderwood, S. K. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847–30857 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Cotto, J. J., Kline, M. & Morimoto, R. I. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J. Biol. Chem. 271, 3355–3358 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Kline, M. P. & Morimoto, R. I. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17, 2107–2115 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xia, W., Guo, Y., Vilaboa, N., Zuo, J. & Voellmy, R. Transcriptional activation of heat shock factor HSF1 probed by phosphopeptide analysis of factor 32P-labeled in vivo. J. Biol. Chem. 273, 8749–8755 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Collavin, L. et al. Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc. Natl Acad. Sci. USA 101, 8870–8875 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riquelme, C., Barthel, K. K. & Liu, X. SUMO-1 modification of MEF2A regulates its transcriptional activity. J. Cell. Mol. Med. 10, 132–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Sapetschnig, A. et al. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206–5215 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohideen, F. et al. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nature Struct. Mol. Biol. 16, 945–952 (2009).

    Article  CAS  Google Scholar 

  64. Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao, J., Munson, K. M., Webb, W. W. & Lis, J. T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006). Multi-photon microscopy imaging of polytene nuclei in living D. melanogaster salivary glands, allowing real-time analysis of HSF recruitment to the Hsp70 gene.

    Article  CAS  PubMed  Google Scholar 

  66. Yao, J., Ardehali, M. B., Fecko, C. J., Webb, W. W. & Lis, J. T. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol. Cell 28, 978–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Lis, J. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 347–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Brown, S. A., Imbalzano, A. N. & Kingston, R. E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Brown, S. A., Weirich, C. S., Newton, E. M. & Kingston, R. E. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues. EMBO J. 17, 3146–3154 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sullivan, E. K., Weirich, C. S., Guyon, J. R., Sif, S. & Kingston, R. E. Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol. Cell. Biol. 21, 5826–5837 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petesch, S. J. & Lis, J. T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boehm, A. K., Saunders, A., Werner, J. & Lis, J. T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Mason, P. B., Jr & Lis, J. T. Cooperative and competitive protein interactions at the Hsp70 promoter. J. Biol. Chem. 272, 33227–33233 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Yuan, C. X. & Gurley, W. B. Potential targets for HSF1 within the preinitiation complex. Cell Stress Chaperones 5, 229–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Östling, P., Björk, J. K., Roos-Mattjus, P., Mezger, V. & Sistonen, L. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem. 282, 7077–7086 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Denegri, M. et al. Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol. Biol. Cell 13, 2069–2079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jolly, C. et al. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J. Cell Biol. 156, 775–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alastalo, T.-P. et al. Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J. Cell Sci. 116, 3557–3570 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Jolly, C. et al. Stress-induced transcription of satellite III repeats. J. Cell Biol. 164, 25–33 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rizzi, N. et al. Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol. Biol. Cell 15, 543–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sandqvist, A. et al. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol. Biol. Cell 20, 1340–1347 (2009). Provides the first evidence of a functional interplay between HSFs through heterotrimerization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tanabe, M., Nakai, A., Kawazoe, Y. & Nagata, K. Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 272, 15389–15395 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Fujimoto, M. et al. HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J. 23, 4297–4306 (2004). Shows that there is competition between distinct HSF family members for regulating FGF expression in the lens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jedlicka, P., Mortin, M. A. & Wu, C. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16, 2452–2462 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D. & Myers, R. M. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell 15, 1254–1261 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Takaki, E. et al. Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J. Biol. Chem. 281, 4931–4937 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Christians, E., Davis, A. A., Thomas, S. D. & Benjamin, I. J. Maternal effect of Hsf1 on reproductive success. Nature 407, 693–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Metchat, A. et al. Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90α expression. J. Biol. Chem. 284, 9521–9528 (2009). Establishes a role for the maternal transcription factor HSF1 in the normal progression of meiosis in oocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bierkamp, C. et al. Lack of maternal heat shock factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev. Biol. 339, 338–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Inouye, S. et al. Impaired IgG production in mice deficient for heat shock transcription factor 1. J. Biol. Chem. 279, 38701–38709 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Takii, R. et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J. Immunol. 184, 1041–1048 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Santos, S. D. & Saraiva, M. J. Enlarged ventricles, astrogliosis and neurodegeneration in heat shock factor 1 null mouse brain. Neuroscience 126, 657–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Homma, S. et al. Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J. Neurosci. 27, 7974–7986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rallu, M. et al. Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl Acad. Sci. USA 94, 2392–2397 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kallio, M. et al. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21, 2591–2601 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, G., Zhang, J., Moskophidis, D. & Mivechi, N. F. Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 36, 48–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Chang, Y. et al. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev. 20, 836–847 (2006). The first identification of a direct target gene of HSFs in development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tsai, L. H., Delalle, I., Caviness, V. S., Jr, Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Sarge, K. D., Park-Sarge, O.-K., Kirby, J. D., Mayo, K. E. & Morimoto, R. I. Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50, 1334–1343 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and disease. Cell 133, 217–222 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Åkerfelt, M. et al. Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc. Natl Acad. Sci. USA 105, 11224–11229 (2008). Provides a global description of HSF2 target genes in mouse testis.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang, G. et al. Essential requirement for both hsf1 and hsf2 transcriptional activity in spermatogenesis and male fertility. Genesis 38, 66–80 (2004).

    Article  PubMed  CAS  Google Scholar 

  106. Min., J. N., Zhang, Y., Moskophidis, D. & Mivechi, N. F. Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40, 205–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Shi, X. et al. Removal of Hsf4 leads to cataract development in mice through down-regulation of γS-crystallin and Bfsp expression. BMC Mol. Biol. 10, 10 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Bu, L. et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nature Genet. 31, 276–278 (2002). The first study to link a mutation of an HSF gene to a particular disease.

    Article  CAS  PubMed  Google Scholar 

  109. Fujimoto, M. et al. Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J. Biol. Chem. 283, 29961–29970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003). Establishes the link between HSF and the insulin-like signalling pathway in the regulation of C. elegans lifespan.

    Article  CAS  PubMed  Google Scholar 

  111. Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004). Provides the first evidence for the important role of HSF and molecular chaperone networks in ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA 106, 14914–14919 (2009). Shows that failure in proteostasis occurs at an early stage of adulthood and coincides with a severely reduced activation of the heat shock response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet. 8, 835–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Heydari, A. R. et al. Effect of caloric restriction on the expression of heat shock protein 70 and the activation of heat shock transcription factor 1. Dev. Genet. 18, 114–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).

    Article  CAS  PubMed  Google Scholar 

  116. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Stringham, E. G. & Candido, E. P. Targeted single-cell induction of gene products in Caenorhabditis elegans: a new tool for developmental studies. J. Exp. Zool. 266, 227–233 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Prahlad, V. & Morimoto, R. I. Integrating the stress response: lessons for neurodegenerative diseases from C. elegans. Trends Cell Biol. 19, 52–61 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Clark, D. A., Gabel, C. V., Gabel, H. & Samuel, A. D. Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients. J. Neurosci. 27, 6083–6090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mori, I. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annu. Rev. Genet. 33, 399–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811–814 (2008). Introduces the concept that the heat shock response in somatic cells is not cell-autonomous, but depends on thermosensory neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang, D. et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10, 46–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khaleque, M. A. et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 27, 1886–1893 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007). Describes HSF1 as a non-oncogene that is required for tumour initiation and maintenance in various cancer models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Whitesell, L. & Lindquist, S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets. 13, 469–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Westerheide, S. D. & Morimoto, R. I. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280, 33097–33100 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Westerheide, S. D. et al. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279, 56053–56060 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Trott, A. et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell 19, 1104–1112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Neef, D. W., Turski, M. L. & Thiele, D. J. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 8, e1000291 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Westerheide, S. D., Kawahara, T. L., Orton, K. & Morimoto, R. I. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J. Biol. Chem. 281, 9616–9622 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Phillips, P. A. et al. Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res. 67, 9407–9416 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Amin, J., Ananthan, J. & Voellmy, R. Key features of heat shock regulatory elements. Mol. Cell. Biol. 8, 3761–3769 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Xiao, H. & Lis, J. T. Germline transformation used to define key features of heat-shock response elements. Science 239, 1139–1142 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Perisic, O., Xiao, H. & Lis, J. T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59, 797–806 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Xiao, H., Perisic, O. & Lis, J. T. Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64, 585–593 (1991).

    Article  CAS  PubMed  Google Scholar 

  136. Gorisch, S. M., Lichter, P. & Rippe, K. Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments. Histochem. Cell Biol. 123, 217–228 (2005).

    Article  PubMed  CAS  Google Scholar 

  137. Cotto, J., Fox, S. & Morimoto, R. HSF1 granules: a novel stress-induced nuclear compartment of human cells. J. Cell Sci. 110, 2925–2934 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Chiodi, I. et al. Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J. Cell Sci. 113, 4043–4053 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Denegri, M. et al. Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol. Biol. Cell 12, 3502–3514 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Metz, A., Soret, J., Vourc'h, C., Tazi, J. & Jolly, C. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J. Cell Sci. 117, 4551–4558 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Weighardt, F. et al. A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J. Cell Sci. 112, 1465–1476 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Chiodi, I. et al. RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies. Nucleic Acids Res. 32, 4127–4136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Valgardsdottir, R. et al. Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol. Biol. Cell 16, 2597–2604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shinka, T. et al. Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol. Reprod. 71, 297–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Tessari, A. et al. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol. Hum. Reprod. 10, 253–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Bhowmick, B. K., Takahata, N., Watanabe, M. & Satta, Y. Comparative analysis of human masculinity. Genet. Mol. Res. 5, 696–712 (2006).

    PubMed  Google Scholar 

  147. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sistonen, L., Sarge, K. D. & Morimoto, R. I. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14, 2087–2099 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose original work could only be cited indirectly owing to space limitations. Members of our laboratories are acknowledged for valuable comments on the manuscript. Our own work is supported by The Academy of Finland, The Sigrid Jusélius Foundation, The Finnish Cancer Organizations and Åbo Akademi University. The image in box 2 is courtesy of A. Sandqvist, Department of Biosciences, Åbo Akademi University, Turku, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Sistonen.

Ethics declarations

Competing interests

Richard I. Morimoto is a co-founder, shareholder and paid consultant for Proteostasis Therapeutics Inc., which is developing drugs that could be pharmacologic chaperones and proteostasis regulators.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Lea Sistonen's homepage

Richard I. Morimoto's homepage

Glossary

Polytene chromosome

A chromosome that undergoes multiple rounds of DNA replication, without cell division, and produces many sister chromatids that remain synapsed together; for example, in larval salivary glands of D. melanogaster.

Proteostasis

Also called protein homeostasis, this refers to the control of the concentration, three-dimensional structure, binding interactions and cellular location of individual proteins making up the proteome.

S1 mapping

A method for mapping precursor or mature mRNAs that correspond to particular DNA sequences using the S1 nuclease enzyme.

Coiled coil

A structural motif in proteins, in which α-helices are coiled together like the strands of a rope, most commonly as dimers and trimers.

Leu zipper

A common three-dimensional structural motif in regulatory proteins that functions as an oligomerization domain and generates adhesion forces in parallel α-helices.

ψKxExxSP

Many SUMO substrates contain this extended consensus sequence (called the PDSM), in which ψ denotes a branched hydrophobic amino acid, the Lys is the SUMO acceptor and x is any amino acid.

Sirtuin

A class of proteins that posses either histone deacetylase or monoribosyltransferase activity. SIRT1 is activated by resveratrol, which is a phytoalexin produced naturally by several plants when under attack by pathogens, and has been suggested to trigger mechanisms that counteract ageing-related effects in animals.

Paused RNA polymerase II

An RNA polymerase II molecule that is engaged in transcription but has arrested after synthesizing 25 nucleotides; for example, on the HSP70 promoter under non-heat-shock conditions.

Mediator complex

A multiprotein complex that functions as a transcriptional co-activator and binds to the C-terminal domain of the RNA polymerase II holoenzyme, acting as a bridge between this enzyme and transcription factors.

Preinitiation complex

A large protein complex that is necessary for the transcription of protein-coding genes in eukaryotes and typically consists of six general transcription factors: TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH.

Satellite III repeat

A highly repetitive DNA element that is so called because repetitions of a short DNA sequence tend to produce a different frequency of the nucleotides adenine, cytosine, guanine and thymine compared with bulk DNA.

Germinal vesicle breakdown

The process whereby a greatly enlarged nucleus of an egg in prophase of the first meiotic division breaks down, permitting entry into metaphase I.

Cortical plate

The middle layer of the cerebral cortex. The cerebral cortex is formed during development, and neurons migrate from the ventricular zone to form layers. The cortical plate will form the deep layers of the mature cortex.

Ventricle

A brain structure that contains cerebrospinal fluid. There are four cerebral ventricles: the paired lateral ventricles that are large and C shaped, and the third and fourth ventricles in the midline.

Cortical lamination

The characteristic distribution of neuronal cell types and their connections in the six main layers of the cerebral cortex.

Neuronal migration

The process whereby neurons migrate from their place of origin or birth to their final position in the brain by, for example, radial migration or tangential migration.

Pachytene spermatocyte

A male gametocyte that derives from a spermatogonium, resides in the seminiferous tubules of the testis and is in the developmental stage of spermatogenesis, before which meiosis occurs.

Round spermatid

A haploid male gamete derived from spermatocyte division. As a result of meiosis, each round spermatid contains only half of the genetic material present in the original spermatocyte.

Sex chromosomal multi-copy gene

A large amplified region that comprises palindromic or tandem segmental duplications, contains multi-copy gene families and resides in the X and Y chromosomes.

Sex chromatin

The complex combination of DNA and proteins that makes up chromatin of the X and Y chromosomes during spermatogenesis.

Cataract

Clouding that develops in the crystalline lens of the eye or in its envelope, varying in degree from slight to complete opacity and obstructing the passage of light.

Unfolded protein response

A cellular stress response that is activated by an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum.

Non-oncogene addiction

The increased dependence of cancer cells on the normal cellular functions of certain genes, which are not classical cancer genes or oncogenes but, if targeted, they could be equally effective at treating cancer.

Aneuploidy

An abnormal number of chromosomes generated during cell division when the chromosomes do not separate properly between the two daughter cells. This is a characteristic of cancer cells.

PolyQ

A protein sequence that consists of multiple (typically tens to hundreds) Glu repeats. Several inheritable neurodegenerative disorders are polyQ diseases, characterized by a mutation that extends a CAG (which encodes Glu) repeat in a specific gene (for example, huntingtin (HTT) in Huntington's disease) beyond a certain length.

Rheostat

An adjustment device (a term borrowed from electronics).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åkerfelt, M., Morimoto, R. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11, 545–555 (2010). https://doi.org/10.1038/nrm2938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing