Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deubiquitylation and regulation of the immune response

Key Points

  • Ubiquitylation is a reversible process that is counter-regulated by ubiquitylating and enzymes deubiquitylating enzymes (DUBs). In addition to targeting proteins for degradation by the 26S proteasome, ubiquitylation also mediates various non-degradative functions, including the regulation of protein trafficking and signal transduction.

  • DUBs form a large family of proteases that de-conjugate ubiquitin chains from target proteins and thereby regulate diverse aspects of immune function, including innate immune responses to viruses and bacteria, the development and activation of lymphocytes, and the maintenance of immunological tolerance.

  • The substrate binding of some DUBs, such as A20 and CYLD, involves specific adaptor proteins, which probably contribute to the functional diversity and specificity of the DUBs. These adaptor proteins often contain a ubiquitin-association domain that can bind to target proteins conjugated with ubiquitin chains.

  • A20 has a crucial role in the negative regulation of innate immune-receptor signalling and prevention of inflammation. A20-deficient cells have a defect in terminating the NF-κB activation signal that is elicited from the tumour-necrosis-factor receptor and Toll-like receptors, which is associated with aberrant production of pro-inflammatory mediators.

  • DUBA is a DUB that specifically regulates antiviral innate immune responses. DUBA deubiquitylates TRAF3 (tumour-necrosis factor (TNF) receptor (TNFR)-associated factor 3), an adaptor that connects the antiviral effector kinases, TBK1 (TANK-binding kinase 1) and IKKε (IκB (inhibitor of nuclear factor-κB (NF-κB)) kinase ε), to upstream signalling molecules. The DUBA-mediated deubiquitylation of TRAF3 might negatively regulate the recruitment and activation of TBK1–IKKε.

  • CYLD has a crucial role in regulating the development, activation and homeostasis of T and B cells. In addition to negatively regulating NF-κB activation, CYLD has a positive role in thymocyte T-cell receptor signalling by deubiquitylating the protein tyrosine kinase LCK.

  • Balanced events of ubiquitylation and deubiquitylation are required for the maintenance of T-cell tolerance and prevention of autoimmunity. Characterization of the DUBs that are involved in the induction of T-cell tolerance might be important for the rational design of new therapeutic approaches for treating autoimmune disorders.

Abstract

Ubiquitylation is a fundamental mechanism of signal transduction that regulates immune responses and many other biological processes. Similar to phosphorylation, ubiquitylation is a reversible process that is counter-regulated by ubiquitylating enzymes and deubiquitylating enzymes (DUBs). Despite the identification of a large number of DUBs, our knowledge of the function and activities of this family of enzymes is just starting to accumulate. As described in this Review, recent studies of several DUBs, in particular CYLD and A20, show that deubiquitylation has an important role in the regulation of both innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of innate immune-receptor signalling by deubiquitylating enzymes (DUBs).
Figure 2: Regulation of TCR signalling by CYLD.
Figure 3: Dual signalling functions of CYLD in B cells as indicated by studies of a natural variant, sCYLD.

Similar content being viewed by others

References

  1. Adhikari, A., Xu, M. & Chen, Z. J. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26, 3214–3226 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    CAS  PubMed  Google Scholar 

  3. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nature Rev. Immunol. 5, 941–952 (2005).

    Article  CAS  Google Scholar 

  4. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gong, B. & Leznik, E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 20, 365–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Makarova, K. S., Aravind, L. & Koonin, E. V. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25, 50–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007). This paper identifies DUBA as a key regulator of antiviral innate immunity.

    Article  CAS  PubMed  Google Scholar 

  8. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kB signalling. Nature 430, 694–699 (2004). This paper shows that A20 has both DUB and E3-ligase functions.

    Article  CAS  PubMed  Google Scholar 

  9. Lin, A. E. & Mak, T. W. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr. Opin. Immunol. 19, 665–673 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet. 25, 160–165 (2000). This paper reports the identification of CYLD as a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  11. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kB activation by TNFR family members. Nature 424, 793–796 (2003). References 12–14 are key reports of the signalling function of CYLD.

    Article  CAS  PubMed  Google Scholar 

  15. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer,A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida, H., Jono, H., Kai, H. & Li, J. D. The tumor suppressor CYLD acts as a negative regulator for Toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7. J. Biol. Chem. 280, 41111–41121 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, W. et al. Deubiquitinating enzyme CYLD regulates RANK signaling and osteoclastogenesis. J. Clinic. Invest. (in the press).

  18. Reiley, W. W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nature Immunol. 7, 411–417 (2006). This paper was the first to show the in vivo role of CYLD in regulating immune functions.

    Article  CAS  Google Scholar 

  19. Reiley, W. W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, A. et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 13, 705–716 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Stokes, A. et al. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal. 18, 1584–1594 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lim, J. H. et al. Tumor suppressor CYLD acts as a negative regulator for non-typeable Haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS ONE 2, e1032 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim, J. H. et al. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity 27, 349–360 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J. et al. Impaired regulation of NF-κB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J. Clin. Invest. 116, 3042–3049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hövelmeyer, N. et al. Regulation of B cell homeostasis and activation by the tumor suppressor gene CYLD. J. Exp. Med. 204, 2615–2627 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, J. et al. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J. Biol. Chem. 283, 8802–8809 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Stegmeier, F. et al. The tumor suppressor CYLD regulates entry into mitosis. Proc. Natl Acad. Sci. USA 104, 8869–8874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure 12, 1719–1728 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor a-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B Box module. Mol. Cell 29, 451–464 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Xue, L. et al. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev. Cell 13, 446–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wooten, M. W. et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J. Biol. Chem. 283, 6783–6789 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–4 (2000). This study was the first to report the in vivo role of A20 in regulating inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  38. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mauro, C. et al. ABIN-1 binds to NEMO/IKKg and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem. 281, 18482–18488 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  42. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lin, S. C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Shembade, N., Harhaj, N. S., Liebl, D. J. & Harhaj, E. W. Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J. 26, 3910–3922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, D. Y. et al. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor α. J. Biol. Chem. 272, 25816–25823 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. De Valck, D. et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18, 4182–4190 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wagner, S. et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABINs. Oncogene 21 January 2008 (doi:10.1038/sj.onc.1211042).

    Article  CAS  PubMed  Google Scholar 

  49. Evans, P. C. et al. Isolation and characterization of two novel A20-like proteins. Biochem. J. 357, 617–623 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Evans, P. C. et al. A novel type of deubiquitinating enzyme. J. Biol. Chem. 278, 23180–23186 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Enesa, K. et al. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036–7045 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Balakirev, M. Y., Tcherniuk, S. O., Jaquinod, M. & Chroboczek, J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 4, 517–522 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soares, L. et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nature Immunol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  54. Schweitzer, K., Bozko, P. M., Dubiel, W. & Naumann, M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26, 1532–1541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scherer, D. C., Brockman, J. A., Chen, A., Maniatis, T. & Ballard, D. W. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl Acad. Sci. USA 92, 11259–11263 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwechheimer, C. & Deng, X. W. COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol. 11, 420–426 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Baek, K. H. Cytokine-regulated protein degradation by the ubiquitination system. Curr. Protein Pept. Sci. 7, 171–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Gesbert, F., Malardé, V. & Dautry-Varsat, A. Ubiquitination of the common cytokine receptor gammac and regulation of expression by an ubiquitination/deubiquitination machinery. Biochem. Biophys. Res. Commun. 334, 474–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Migone, T. S. et al. The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal. Blood 98, 1935–1941 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  62. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Med. 13, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reiley, W., Zhang, M., Wu, X., Graner, E. & Sun, S. -C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol. Cell. Biol. 25, 3886–3895 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hiscott, J. Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev. 18, 483–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Häcker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Guo, B. & Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282, 11817–11826 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Gatot, J. S. et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKε-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J. Biol. Chem. 282, 31131–31146 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nature Immunol. 8, 592–600 (2007).

    Article  CAS  Google Scholar 

  71. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007). This paper reports the regulation of RIG-I signalling function by K63-linked ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, M. et al. Regulation of IKK-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 8 May 2008 (doi:10.1074/jbc.M801451200).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS J. 576, 86–90 (2004).

    Article  CAS  Google Scholar 

  74. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, R. et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J. Biol. Chem. 281, 2095–2103 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Molina, T. J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Rao, N. et al. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl Acad. Sci. USA 99, 3794–3799 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Thien, C. B., Bowtell, D. D. & Langdon, W. Y. Perturbed regulation of ZAP-70 and sustained tyrosine phosphorylation of LAT and SLP-76 in c-Cbl-deficient thymocytes. J. Immunol. 162, 7133–7139 (1999).

    CAS  PubMed  Google Scholar 

  81. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hawash, I. Y., Kesavan, K. P., Magee, A. I., Geahlen, R. L. & Harrison, M. L. The Lck SH3 domain negatively regulates localization to lipid rafts through an interaction with c-Cbl. J. Biol. Chem. 277, 5683–5691 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Kronenberg, M. & Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 435, 598–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Choi, S. & Schwartz, R. H. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin. Immunol. 19, 140–152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. MacKenzie, D. A. et al. GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J. Biol. Chem. 282, 9696–9702 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Mouchantaf, R. et al. The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J. Biol. Chem. 281, 38738–38747 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y. C. The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Semin. Immunol. 19, 197–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perry, W. L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nature Genet. 18, 143–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Rawlings, D. J., Sommer, K. & Moreno-García, M. E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nature Rev. Immunol. 6, 799–812 (2006).

    Article  CAS  Google Scholar 

  92. Sun, L., Deng, L., Ea, C. -K., Xia, Z. -P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 26, 4634–4645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, H. H., Xie, M., Schneider, M. D. & Chen, Z. J. Essential role of TAK1 in thymocyte development and activation. Proc. Natl Acad. Sci. USA 103, 11677–11682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sato, S. et al. TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int. Immunol. 18, 1405–1411 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Wan, Y. Y., Chi, H., Xie, M., Schneider, M. D. & Flavell, R. A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nature Immunol. 7, 851–858 (2006).

    Article  CAS  Google Scholar 

  98. Thiefes, A. et al. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep. 7, 838–844 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yamamoto, M. et al. Cutting Edge: pivotal function of Ubc13 in thymocyte TCR signaling. J. Immunol. 177, 7520–7524 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. King, C. G. et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nature Med. 12, 1088–1092 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nature Immunol. 9, 263–271 (2008).

    Article  CAS  Google Scholar 

  102. Baumgart, D. C. & Carding, S. R. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627–1640 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Sen, R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity 25, 871–883 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  105. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B-cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Jin, W. et al. Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J. Biol. Chem. 282, 15884–15893 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sigismund, S., Polo, S. & Di Fiore, P. P. Signaling through monoubiquitination. Curr. Top. Microbiol. Immunol. 286, 149–185 (2004).

    CAS  PubMed  Google Scholar 

  111. Beinke, S. & Ley, S. C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell. 7, 401–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 357, re13 (2006).

    Google Scholar 

Download references

Acknowledgements

Work in my laboratory is supported by the University of Texas MD Anderson Cancer Center and the National Institutes of Health, USA, Grants R01 AI064639, R01 AI057555, R01 CA94922. I would like to thank the members of my laboratory for discussions and input, and I apologize to those authors whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Shao-Cong Sun's homepage

Glossary

26S proteasome

A giant multicatalytic protease that resides in the cytosol and nucleus. The 20S core, which contains three distinct catalytic subunits, can be appended at either end by a 19S cap or an 11S cap. The binding of two 19S caps to the 20S core forms the 26S proteasome, which degrades polyubiquitylated proteins.

E3 ubiquitin ligases

Enzymes that are required to attach the molecular tag ubiquitin to proteins. Depending on the position and number of the ubiquitin molecules that are attached, the ubiquitin tag can target proteins for degradation in the proteasomal complex, sort them to specific subcellular compartments or modify their biological activity.

SH3 domains

Protein-interaction domains that are commonly found in signal-transduction molecules. They specifically interact with certain proline-containing peptides (containing either (R/K)XXPXXP or PXXPXR motifs, where X denotes any amino acid) to facilitate protein–protein interactions that are required for protein function or subcellular localization.

Small interfering RNA (siRNA)-mediated knockdown

Double-stranded RNAs (dsRNAs) with sequences that precisely match a given gene are able to 'knock down' the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript. The two most common forms of dsRNAs used for gene silencing are short — usually 21-bp long — siRNAs or the plasmid-delivered short hairpin RNAs (shRNAs).

Yeast two-hybrid screen

A screening system for protein–protein interactions that result in the transcription of a reporter gene when a bait protein attached to a DNA-binding domain comes into contact with a prey protein bound to a transcriptional activator.

COP9 signalosome

(CSN). A multi-protein complex conserved in eukaryotic organisms that contains eight subunits, which have structural homology with the lid subunits of the 19S regulatory particle of the 26S proteasome. A prominent function of the COP9 signalosome is to regulate the activity of cullin-based E3 ubiquitin ligases, thereby modulating protein ubiquitylation and degradation.

Common cytokine-receptor γ-chain

c). A type I cytokine receptor chain that is shared by the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21.

Pathogen-associated molecular patterns

(PAMPs). Molecular patterns that are found in pathogens but not mammalian cells. Examples include terminally mannosylated and polymannosylated compounds, which bind the mannose receptor, and various microbial products, such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA, which bind Toll-like receptors.

Pattern-recognition receptors

(PPRs). Host receptors (such as Toll-like receptors) that can sense pathogen-associated molecular patterns and initiate signalling cascades (involving activation of nuclear factor-κB) that lead to an innate immune response.

Anergy

A state of T cells that have been stimulated through their T-cell receptors in the absence of the ligation of CD28. On restimulation, these T cells are unable to produce interleukin-2 or to proliferate, even in the presence of co-stimulatory signals.

Canonical NF-κB pathway

A typical pathway of NF-κB activation that involves phosphorylation and degradation of the prototypical NFκB inhibitor, IκBα.

Non-canonical NF-κB pathway

A pathway of NFκB activation that does not involve IκBα degradation but relies on the processing of an NF-κB precursor protein, p100, leading to nuclear translocation of the p52–RELB NFκB heterodimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol 8, 501–511 (2008). https://doi.org/10.1038/nri2337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2337

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing