Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Future biologic targets for IBD: potentials and pitfalls

Abstract

The treatment of patients with IBD has evolved towards biologic therapy, which seeks to target specific immune and biochemical abnormalities at the molecular and cellular level. Multiple genes have been associated with susceptibility to IBD, and many of these can be linked to alterations in immune pathways. These immune pathways provide avenues for understanding the pathogenesis of IBD and suggest future drug targets, such as the IL-12–IL-23 pathway. In addition, failed therapeutic drug trials can provide valuable information about pitfalls in study design, drug delivery and disease activity assessment. Future biologic drug development will benefit from the early identification of subsets of patients who are most likely to respond to therapy by use of biological markers of genetic susceptibility or immunologic susceptibility.

Key Points

  • Multiple genetic associations with IBD have been discovered in the past few years

  • Several susceptibility genes are associated with innate or adaptive immune system pathways and these pathways provide multiple targets for therapeutic intervention

  • Potential pitfalls in future biologic drug development relate to historically high placebo response rates in patients with IBD

  • Biological markers of disease activity, genetic susceptibility and immunologic susceptibility may significantly increase drug response rates relative to placebo

  • Future drug development should focus on subpopulations of patients with specific genetic and immunologic profiles who stand to benefit the most from targeted therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Therapeutic targets for IBD.

Similar content being viewed by others

References

  1. Kappelman, M. D. et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5, 1424–1429 (2007).

    PubMed  Google Scholar 

  2. Kappelman, M. D. et al. Direct health care costs of Crohn's disease and ulcerative colitis in US children and adults. Gastroenterology 135, 1907–1913 (2008).

    PubMed  Google Scholar 

  3. Drossman, D. A., Patrick, D. L., Mitchell, C. M., Zagami, E. A. & Appelbaum, M. I. Health-related quality of life in inflammatory bowel disease. Functional status and patient worries and concerns. Dig. Dis. Sci. 34, 1379–1386 (1989).

    CAS  PubMed  Google Scholar 

  4. US Department of Health & Human Services US Food & Drug Administration [online], (2009).

  5. Feagan, B. G. et al. Effects of adalimumab therapy on incidence of hospitalization and surgery in Crohn's disease: results from the CHARM study. Gastroenterology 135, 1493–1499 (2008).

    CAS  PubMed  Google Scholar 

  6. Sandborn, W. J. et al. Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology 137, 1250–1260 (2009).

    CAS  PubMed  Google Scholar 

  7. Feagan, B. G. et al. The effects of infliximab therapy on health-related quality of life in ulcerative colitis patients. Am. J. Gastroenterol. 102, 794–802 (2007).

    CAS  PubMed  Google Scholar 

  8. Loftus, E. V. et al. Effects of adalimumab maintenance therapy on health-related quality of life of patients with Crohn's disease: patient-reported outcomes of the CHARM trial. Am. J. Gastroenterol. 103, 3132–3141 (2008).

    PubMed  Google Scholar 

  9. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    CAS  PubMed  Google Scholar 

  10. Su, C., Lichtenstein, G. R., Krok, K., Brensinger, C. M. & Lewis, J. D. A meta-analysis of the placebo rates of remission and response in clinical trials of active Crohn's disease. Gastroenterology 126, 1257–1269 (2004).

    PubMed  Google Scholar 

  11. Su, C., Lewis, J. D., Goldberg, B., Brensinger, C. & Lichtenstein, G. R. A meta-analysis of the placebo rates of remission and response in clinical trials of active ulcerative colitis. Gastroenterology 132, 516–526 (2007).

    PubMed  Google Scholar 

  12. Sandborn, W. J. et al. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121, 1088–1094 (2001).

    CAS  PubMed  Google Scholar 

  13. Rutgeerts, P. et al. Onercept for moderate-to-severe Crohn's disease: a randomized, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 4, 888–893 (2006).

    CAS  PubMed  Google Scholar 

  14. Sandborn, W. J. et al. CDP571, a humanised monoclonal antibody to tumour necrosis factor alpha, for moderate to severe Crohn's disease: a randomised, double blind, placebo controlled trial. Gut 53, 1485–1493 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reinisch, W. et al. Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm. Bowel Dis. doi:10.1002/ibd.21038.

    PubMed  Google Scholar 

  16. Hommes, D. M. T. et al. Fontolizumab (HuZAF), a humanized anti-IFN-gamma antibody, has clinical activity and excellent toelrability in moderate to severe Crohn's disease [abstract]. Digestive Disease Week 2004 (2004).

    Google Scholar 

  17. Lewis, J. D. C-reactive protein: anti-placebo or predictor of response. Gastroenterology 129, 1114–1116 (2005).

    CAS  PubMed  Google Scholar 

  18. Sandborn, W. J. et al. A review of activity indices and efficacy endpoints for clinical trials of medical therapy in adults with Crohn's disease. Gastroenterology 122, 512–530 (2002).

    PubMed  Google Scholar 

  19. Jones, R. et al. Relationships between disease activity and serum and fecal biomarkers in patients with Crohn's disease. Clin. Gastroenterol. 6, 1218–1224 (2008).

    Google Scholar 

  20. Schreiber, S. et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn's disease. Gastroenterology 129, 807–818 (2005).

    CAS  PubMed  Google Scholar 

  21. Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).

    CAS  PubMed  Google Scholar 

  22. Colombel, J. F. et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial. Gastroenterology 132, 52–65 (2007).

    CAS  PubMed  Google Scholar 

  23. Sandborn, W. J. et al. Adalimumab for maintenance treatment of Crohn's disease: results of the CLASSIC II trial. Gut 56, 1232–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Humira (adalimumab) package insert (Abbott, 2002).

  25. Van den Brande, J. M. et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology 124, 1774–1785 (2003).

    CAS  PubMed  Google Scholar 

  26. Yacyshyn, B. R. et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn's disease. Gut 51, 30–36 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yacyshyn, B. et al. A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn's disease. Clin. Gastroenterol. Hepatol. 5, 215–220 (2007).

    CAS  PubMed  Google Scholar 

  28. Miner, P. B. Jr, Wedel, M. K., Xia, S. & Baker, B. F. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment. Pharmacol. Ther. 23, 1403–1413 (2006).

    CAS  PubMed  Google Scholar 

  29. van Deventer, S. J. et al. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment. Pharmacol. Ther. 23, 1415–1425 (2006).

    CAS  PubMed  Google Scholar 

  30. Siegel, C. A., Marden, S. M., Persing, S. M., Larson, R. J. & Sands, B. E. Risk of lymphoma associated with combination anti-TNF and immunomodulator therapy for the treatment of Crohn's disease: a meta-analysis. Clin. Gastroenterol. Hepatol. 7, 874–881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Remicade® (infliximab) package insert (Centocor, 2003).

  32. Cimzia® (certolizumab pegol) package insert (UBC, 2008).

  33. Pagnoux, C. et al. JC virus leukoencephalopathy complicating Wegener's granulomatosis. Joint Bone Spine 70, 376–379 (2003).

    PubMed  Google Scholar 

  34. Feagan, B. G. et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N. Engl. J. Med. 352, 2499–2507 (2005).

    CAS  PubMed  Google Scholar 

  35. Feagan, B. G. et al. Treatment of active Crohn's disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin. Gastroenterol. Hepatol. 6, 1370–1377 (2008).

    CAS  PubMed  Google Scholar 

  36. US National Institutes of Health ClinicalTrials.gov [online], (2009).

  37. Saruta, M. et al. Phenotype and effector function of CC chemokine receptor 9-expressing lymphocytes in small intestinal Crohn's disease. J. Immunol. 178, 3293–3300 (2007).

    CAS  PubMed  Google Scholar 

  38. Panés, J. et al. Efficacy of an inhibitor of adhesion molecule expression (GI270384X) in the treatment of experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G739–G748 (2007).

    PubMed  Google Scholar 

  39. Johnson, F. R. et al. Crohn's disease patients' risk-benefit preferences: serious adverse event risks versus treatment efficacy. Gastroenterology 133, 769–779 (2007).

    PubMed  Google Scholar 

  40. Shih, D. Q. & Targan, S. R. Immunopathogenesis of inflammatory bowel disease. World J. Gastroenterol. 14, 390–400 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shih, D. Q., Targan, S. R. & McGovern, D. Recent advances in IBD pathogenesis: genetics and immunobiology. Curr. Gastroenterol. Rep. 10, 568–575 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Peyrin-Biroulet, L., Desreumaux, P., Sandborn, W. J. & Colombel, J. F. Crohn's disease: beyond antagonists of tumour necrosis factor. Lancet 372, 67–81 (2008).

    CAS  PubMed  Google Scholar 

  43. Rutgeerts, P., Vermeire, S. & Van Assche, G. Biological therapies for inflammatory bowel diseases. Gastroenterology 136, 1182–1197 (2009).

    CAS  PubMed  Google Scholar 

  44. Plevy, S. et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 133, 1414–1422 (2007).

    CAS  PubMed  Google Scholar 

  45. Van Assche, G. et al. Daclizumab, a humanised monoclonal antibody to the interleukin 2 receptor (CD25), for the treatment of moderately to severely active ulcerative colitis: a randomised, double blind, placebo controlled, dose ranging trial. Gut 55, 1568–1574 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Neill, L. A. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 5, 549–563 (2006).

    CAS  PubMed  Google Scholar 

  47. West, K. CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr. Opin. Investig. Drugs 10, 491–504 (2009).

    CAS  PubMed  Google Scholar 

  48. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40, 1319–1323 (2008).

    CAS  PubMed  Google Scholar 

  50. Silverberg, M. S. et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat. Genet. 41, 216–220 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, K. et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am. J. Hum. Genet. 84, 399–405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    CAS  PubMed  Google Scholar 

  54. Sandborn, W. J. et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135, 1130–1141 (2008).

    CAS  PubMed  Google Scholar 

  55. Toedter, G. P. et al. Relationship of C-reactive protein with clinical response after therapy with ustekinumab in Crohn's disease. Am. J. Gastroenterol. 104, 2768–2773 (2009).

    CAS  PubMed  Google Scholar 

  56. Kimball, A. B. et al. Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial. Arch. Dermatol. 144, 200–207 (2008).

    CAS  PubMed  Google Scholar 

  57. Mannon, P. J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med. 351, 2069–2079 (2004).

    CAS  PubMed  Google Scholar 

  58. Nestle, F. O., Kaplan, D. H. & Barker, J. Psoriasis. N. Engl. J. Med. 361, 496–509 (2009).

    CAS  PubMed  Google Scholar 

  59. Sands, B. E. et al. Randomized, double-blind, placebo-controlled trial of the oral interleukin-12/23 inhibitor apilimod mesylate for treatment of active Crohn's disease. Inflamm. Bowel Dis. doi:10.1002/ibd.21159.

    PubMed  Google Scholar 

  60. Nikolaus, S. et al. Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. Gut 42, 470–476 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schreiber, S. et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group. Gastroenterology 119, 1461–1472 (2000).

    CAS  PubMed  Google Scholar 

  63. Louis, E., Libioulle, C., Reenaers, C., Belaiche, J. & Georges, M. Genetics of ulcerative colitis: the come-back of interleukin 10. Gut 58, 1173–1176 (2009).

    CAS  PubMed  Google Scholar 

  64. Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    CAS  PubMed  Google Scholar 

  65. Oyama, Y. et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn's disease. Gastroenterology 128, 552–563 (2005).

    PubMed  Google Scholar 

  66. Taupin, P. OTI-010 Osiris Therapeutics/JCR Pharmaceuticals. Curr. Opin. Investig. Drugs 7, 473–481 (2006).

    CAS  PubMed  Google Scholar 

  67. Osiris Therapeutics Osiris Discontinues Enrollment in Crohn's Study Due to Concerns with Trial Design [online].

  68. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Buscher, D. & Delgado, M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 136, 978–989 (2009).

    CAS  PubMed  Google Scholar 

  69. Gonzalez-Rey, E. et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58, 929–939 (2009).

    CAS  PubMed  Google Scholar 

  70. Garcia-Olmo, D. et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis. Colon Rectum 52, 79–86 (2009).

    PubMed  Google Scholar 

  71. Burman, J. H., Williams, J. A., Thompson, H. & Cooke, W. T. The effect of diversion of intestinal contents on the progress of Crohn's disease of the large bowel. Gut 10, 1054 (1969).

    CAS  PubMed  Google Scholar 

  72. Melmed, G. Y. & Abreu, M. T. New insights into the pathogenesis of inflammatory bowel disease. Curr. Gastroenterol. Rep. 6, 474–481 (2004).

    PubMed  Google Scholar 

  73. Rosenstiel, P., Till, A. & Schreiber, S. NOD-like receptors and human diseases. Microbes Infect. 9, 648–657 (2007).

    CAS  PubMed  Google Scholar 

  74. Franchimont, D. et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53, 987–992 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gewirtz, A. T. et al. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn's disease. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1157–G1163 (2006).

    CAS  PubMed  Google Scholar 

  76. Torok, H. P., Glas, J., Tonenchi, L., Mussack, T. & Folwaczny, C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin. Immunol. 112, 85–91 (2004).

    CAS  PubMed  Google Scholar 

  77. Torok, H. P. et al. Crohn's disease is associated with a toll-like receptor-9 polymorphism. Gastroenterology 127, 365–366 (2004).

    PubMed  Google Scholar 

  78. Abreu, M. T. et al. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277, 20431–20437 (2002).

    CAS  PubMed  Google Scholar 

  79. Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  81. Bambou, J. C. et al. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J. Biol. Chem. 279, 42984–42992 (2004).

    CAS  PubMed  Google Scholar 

  82. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  84. Watanabe, T., Kitani, A., Murray, P. J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5, 800–808 (2004).

    CAS  PubMed  Google Scholar 

  85. Papadakis, K. A. et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-{gamma} production by peripheral blood and mucosal CCR9+ T lymphocytes. J. Immunol. 174, 4985–4990 (2005).

    CAS  PubMed  Google Scholar 

  86. Takedatsu, H. et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135, 552–567 (2008).

    CAS  PubMed  Google Scholar 

  87. Michelsen, K. S. et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One 4, e4719 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Arijs, I. et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58, 1612–1619 (2009).

    CAS  PubMed  Google Scholar 

  89. Ferrante, M. et al. Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm. Bowel Dis. 13, 123–128 (2007).

    PubMed  Google Scholar 

  90. Esters, N. et al. Serological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn's disease. Am. J. Gastroenterol. 97, 1458–1462 (2002).

    CAS  PubMed  Google Scholar 

  91. Vasiliauskas, E. A. et al. Marker antibody expression stratifies Crohn's disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 47, 487–496 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gazdar, A. F. Personalized medicine and inhibition of EGFR signaling in lung cancer. N. Engl. J. Med. 361, 1018–1020 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Y. Melmed.

Ethics declarations

Competing interests

G. Y. Melmed is on the speaker's bureau for Abbot, Proctor & Gamble, and Shire. He is also a Consultant for Amgen and UCB. S. R. Targan is a Consultant for Amgen, Elan, Proctor & Gamble, Prometheus, and Wyeth. He is also on the Board of Directors for Prometheus.

Supplementary information

Supplementary Table 1

The IBD biologic pipeline. (DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melmed, G., Targan, S. Future biologic targets for IBD: potentials and pitfalls. Nat Rev Gastroenterol Hepatol 7, 110–117 (2010). https://doi.org/10.1038/nrgastro.2009.218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.218

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research