Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection

Key Points

  • Chronic kidney disease (CKD) is a worldwide threat to public health, but the scale of the problem is probably not fully appreciated. At present, there are no specific cures for most of the acquired CKDs and renal transplantation is limited by organ shortage. So, efforts are underway to discover new drugs to prevent the progression of renal diseases.

  • More common nephropathies progress slowly, but evolve to end-stage renal disease (ESRD) at different rates. Research in animals and humans have established that progressive deterioration of renal function is the result of compensatory glomerular haemodynamic changes in response to nephron loss due to various original insults. Intraglomerular haemodynamic changes and proteinuria play a key role in this process.

  • Angiotensin converting enzyme (ACE) inhibitors and, increasingly, angiotensin II receptor antagonists are now widely prescribed for the treatment of proteinuric renal diseases, including diabetic nephropathy. Animal and human studies have consistently found that ACE inhibitors and angiotensin II receptor antagonists in combination reduce proteinuria more effectively than the two agents alone. Renin inhibitors and aldosterone antagonists are novel classes of drugs that have been recently proposed as additional tools for renoprotection in clinical trials.

  • In addition to components of the renin–angiotensin–aldosterone system, a large variety of inflammatory cells are recruited in the kidney tissue and are activated to produce mediators that trigger progression of renal disease towards ESRD. Inflammatory cells, apart from being involved in the development of glomerular injury, are key players of tubulointerstitial damage, which eventually leads to interstitial fibrosis. Novel drugs and biological agents that target inflammatory and profibrotic processes are still in the preclinical development, although some are now reaching the clinical arena.

  • Besides statins, the focus is mainly on cytokine/chemokine receptor antagonists, chemokine inhibitors, transforming growth factor-β (TGF-β)-specific antibodies and new TGF-β receptor kinase inhibitors, and thiazolidinediones. Preclinical studies have demonstrated that these show promise as renoprotection agents. However, there is need to assess the safety profile of these molecules in the clinic.

  • Novel drugs and biological agents that target immunological processes of glomerular injury have also been developed. Of note are cyclin-dependent kinase/glycogen synthase kinase-3 inhibitors that have been tested in preclinical animal models of CKD.

  • Based on its property of selectively depleting CD20+ B cells, rituximab has recently been proposed as a therapeutic option for antibody-mediated glomerulonephrities, namely membranous nephropathy, cryoglobulinaemic glomerulonephrities and systemic lupus erythematosus.

  • Overall, as existing drugs for the treatment of chronic nephropathies have a favourable risk/benefit ratio, new therapies to implement renoprotection will require a similar or better safety profile if they are to be widely used and accepted.

Abstract

At present, there are no specific cures for most of the acquired chronic kidney diseases, and renal transplantation is limited by organ shortage, therefore present efforts are concentrated on the prevention of progression of renal diseases. There is robust experimental and clinical evidence that progression of chronic nephropathies is multifactorial; however, intraglomerular haemodynamic changes and proteinuria play a key role in this process. With a focus on renoprotection, we first examine more established therapies — such as those that modulate the renin–angiotensin–aldosterone system — that can be used for the treatment of proteinuric renal diseases. We then discuss examples of novel drugs and biologics that might be used to target the inflammatory and profibrotic process, and glomerular injury, highlighting results from recent clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of progressive glomerular injury.
Figure 2: Mechanisms of aldosterone-induced kidney damage.
Figure 3: Mechanisms of renal interstitial fibrosis.
Figure 4: Structures of TGF-β receptor inhibitors and their inhibitory actions.
Figure 5: Structures and agonistic effects of thiazolidinediones.
Figure 6: Structure and function of γ-secretase inhibitors on podocytes.

Similar content being viewed by others

References

  1. Dirks, J., Remuzzi, G., Horton, S., Schieppati, A. & Rizvi, S. A. H. in Disease Control Priorities in Developing Countries (eds Jamison, D. T. et al.) 695–706 (Oxford University Press and The World Bank, New York, 2006).

    Google Scholar 

  2. Gridelli, B. & Remuzzi, G. Strategies for making more organs available for transplantation. N. Engl. J. Med. 343, 404–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Collins, A. J. The hemoglobin link to adverse outcomes. Adv. Stud Med. 3, S14–S17 (2003).

    Google Scholar 

  4. Hostetter, T. H., Olson, J. L., Rennke, H. G., Venkatachalam, M. A. & Brenner, B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 241, F85–F93 (1981).

    CAS  PubMed  Google Scholar 

  5. Remuzzi, G., Ruggenenti, P. & Perico, N. Chronic renal diseases: renoprotective benefits of renin–angiotensin system inhibition. Ann. Intern. Med. 136, 604–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Cortes, P., Zhao, X., Riser, B. L. & Narins, R. G. Regulation of glomerular volume in normal and partially nephrectomized rats. Am. J. Physiol. 270, F356–F370 (1996).

    CAS  PubMed  Google Scholar 

  7. Hostetter, T. H. Progression of renal disease and renal hypertrophy. Annu. Rev. Physiol. 57, 263–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Kang, D. H. et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J. Am. Soc. Nephrol. 12, 1434–1447 (2001).

    CAS  PubMed  Google Scholar 

  9. Brooks, A. R., Lelkes, P. I. & Rubanyi, G. M. Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium 11, 45–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ingram, A. J., Ly, H., Thai, K., Kang, M. & Scholey, J. W. Activation of mesangial cell signaling cascades in response to mechanical strain. Kidney Int. 55, 476–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Harris, R. C., Haralson, M. A. & Badr, K. F. Continuous stretch–relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab. Invest. 66, 548–554 (1992).

    CAS  PubMed  Google Scholar 

  12. Durvasula, R. V. & Shankland, S. J. Podocyte injury and targeting therapy: an update. Curr. Opin. Nephrol. Hypertens. 15, 1–7 (2006).

    Article  PubMed  Google Scholar 

  13. Morton, M. J. et al. Human podocytes possess a stretch-sensitive, Ca2+-activated K+ channel: potential implications for the control of glomerular filtration. J. Am. Soc. Nephrol. 15, 2981–2987 (2004).

    Article  PubMed  Google Scholar 

  14. Endlich, N. et al. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422 (2001).

    CAS  PubMed  Google Scholar 

  15. Durvasula, R. V. et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int. 65, 30–39 (2004). The first direct evidence that podocytes produce angiotensin II in response to mechanical stress.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson, S., Meyer, T. W., Rennke, H. G. & Brenner, B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J. Clin. Invest. 76, 612–619 (1985). Breakthrough observation that control of increased intraglomerular capillary pressure with ACE inhibitors limits glomerular injury and renal-disease progression in an animal model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zoja, C., Benigni, A. & Remuzzi, G. Cellular responses to protein overload: key event in renal disease progression. Curr. Opin. Nephrol. Hypertens. 13, 31–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Denton, K. M., Anderson, W. P. & Sinniah, R. Effects of angiotensin II on regional afferent and efferent arteriole dimensions and the glomerular pole. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R629–R638 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kagami, S., Border, W. A., Miller, D. E. & Noble, N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J. Clin. Invest. 93, 2431–2437 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vaughan, D. E., Lazos, S. A. & Tong, K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin–angiotensin system and thrombosis. J. Clin. Invest. 95, 995–1001 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macconi, D. et al. Permselective dysfunction of podocyte–podocyte contact upon angiotensin II unravels the molecular target for renoprotective intervention. Am. J. Pathol. 168, 1073–1085 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rudnicki, M. et al. Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int. 71, 325–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, D. W., Saunders, H. J., Baxter, R. C., Field, M. J. & Pollock, C. A. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int. 54, 747–757 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Schlondorff, D. O. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int. 74, 860–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Eddy, A. Role of cellular infiltrates in response to proteinuria. Am. J. Kidney Dis. 37, S25–S29 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ruggenenti, P., Perna, A., Mosconi, L., Pisoni, R. & Remuzzi, G. Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int. 53, 1209–1216 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Iseki, K., Ikemiya, Y., Iseki, C. & Takishita, S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 63, 1468–1474 (2003).

    Article  PubMed  Google Scholar 

  28. Remuzzi, G. & Bertani, T. Pathophysiology of progressive nephropathies. N. Engl. J. Med. 339, 1448–1456 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Giatras, I., Lau, J. & Levey, A. S. Effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease: a meta-analysis of randomized trials.Angiotensin-Converting-Enzyme Inhibition and Progressive Renal Disease Study Group. Ann. Intern. Med. 127, 337–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349, 1857–1863 (1997). The first documentation that an ACE inhibitor slowed the rate of glomerular filtration decline and halved the risk of ESRD in patients with non-diabetic nephropathy. This was in comparison with conventional antihypertensive therapy at equivalent level of blood pressure control.

  31. Ruggenenti, P., Perna, A., Gherardi, G., Benini, R. & Remuzzi, G. Chronic proteinuric nephropathies: outcomes and response to treatment in a prospective cohort of 352 patients with different patterns of renal injury. Am. J. Kidney Dis. 35, 1155–1165 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ruggenenti, P., Schieppati, A. & Remuzzi, G. Progression, remission, regression of chronic renal diseases. Lancet 357, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Jafar, T. H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann. Intern. Med. 139, 244–252 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Bakris, G. L. Hypertension and nephropathy. Am. J. Med. 115 (Suppl. 8A), 49S–54S (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Ruggenenti, P. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 365, 939–946 (2005).

    Article  PubMed  Google Scholar 

  36. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Ravid, M. et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann. Intern. Med. 128, 982–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004). The BENEDICT trial documented for the first time the effect of ACE inhibitors on preventing the onset of nephropathy in patients with type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  39. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001). These three large trials (references 39–41) have provided evidence that angiotensin II receptor antagonists are renoprotective independently of their antihypertensive effect in patients with type 2 diabetes and with incipient or overt nephropathy.

    Article  CAS  PubMed  Google Scholar 

  42. de Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W. & Unger, T. International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000).

    CAS  PubMed  Google Scholar 

  43. Taal, M. W. & Brenner, B. M. Combination ACEI and ARB therapy: additional benefit in renoprotection? Curr. Opin. Nephrol. Hypertens. 11, 377–381 (2002).

    Article  PubMed  Google Scholar 

  44. Campbell, R. et al. Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int. 63, 1094–1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Staessen, J. A., Li, Y. & Richart, T. Oral renin inhibitors. Lancet 368, 1449–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Rongen, G. A., Lenders, J. W., Smits, P. & Thien, T. Clinical pharmacokinetics and efficacy of renin inhibitors. Clin. Pharmacokinet. 29, 6–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Wood, J. M. et al. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun. 308, 698–705 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Pilz, B. et al. Aliskiren, a human renin inhibitor, ameliorates cardiac and renal damage in double-transgenic rats. Hypertension 46, 569–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Stanton, A., Jensen, C., Nussberger, J. & O'Brien, E. Blood pressure lowering in essential hypertension with an oral renin inhibitor, aliskiren. Hypertension 42, 1137–1143 (2003).

    CAS  PubMed  Google Scholar 

  51. Parving, H. H., Persson, F., Lewis, J. B., Lewis, E. J. & Hollenberg, N. K. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Delyani, J. A. Mineralocorticoid receptor antagonists: the evolution of utility and pharmacology. Kidney Int. 57, 1408–1411 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Xue, C. & Siragy, H. M. Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor. Hypertension 46, 584–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Del Vecchio, L., Procaccio, M., Vigano, S. & Cusi, D. Mechanisms of disease: the role of aldosterone in kidney damage and clinical benefits of its blockade. Nature Clin. Pract. Nephrol. 3, 42–49 (2007).

    Article  CAS  Google Scholar 

  55. Remuzzi, G., Cattaneo, D. & Perico, N. The aggravating mechanisms of aldosterone on kidney fibrosis. J. Am. Soc. Nephrol. 19, 1459–1462 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Fujisawa, G. et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int. 66, 1493–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Han, K. H. et al. Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int. 70, 111–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Rocha, R., Chander, P. N., Khanna, K., Zuckerman, A. & Stier, C. T. Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 31, 451–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Nagase, M. et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Aldigier, J. C., Kanjanbuch, T., Ma, L. J., Brown, N. J. & Fogo, A. B. Regression of existing glomerulosclerosis by inhibition of aldosterone. J. Am. Soc. Nephrol. 16, 3306–3314 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Schjoedt, K. J. et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int. 68, 2829–2836 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Epstein, M. et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 1, 940–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Bianchi, S., Bigazzi, R. & Campese, V. M. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am. J. Kidney Dis. 46, 45–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bomback, A. S., Kshirsagar, A. V., Amamoo, M. A. & Klemmer, P. J. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am. J. Kidney Dis. 51, 199–211 (2008).

    Article  PubMed  Google Scholar 

  65. Karet, F. E. & Davenport, A. P. Localization of endothelin peptides in human kidney. Kidney Int. 49, 382–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Kohan, D. E. Endothelins in the normal and diseased kidney. Am. J. Kidney Dis. 29, 2–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Arai, H., Hori, S., Aramori, I., Ohkubo, H. & Nakanishi, S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Sakurai, T. et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Davenport, A. P. International Union of Pharmacology. XXIX. Update on endothelin receptor nomenclature. Pharmacol. Rev. 54, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Verhaar, M. C. et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97, 752–756 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Moreland, S., McMullen, D. M., Delaney, C. L., Lee, V. G. & Hunt, J. T. Venous smooth muscle contains vasoconstrictor ETB-like receptors. Biochem. Biophys. Res. Commun. 184, 100–106 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Remuzzi, G., Perico, N. & Benigni, A. New therapeutics that antagonize endothelin: promises and frustrations. Nature Rev. Drug Discov. 1, 986–1001 (2002).

    Article  CAS  Google Scholar 

  73. Benigni, A. et al. A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int. 44, 440–444 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Nabokov, A. et al. Influence of specific and non-specific endothelin receptor antagonists on renal morphology in rats with surgical renal ablation. Nephrol. Dial. Transplant. 11, 514–520 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Benigni, A. et al. Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy. Kidney Int. 54, 353–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Benigni, A. et al. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 47, 450–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Nakamura, T., Ebihara, I., Tomino, Y. & Koide, H. Effect of a specific endothelin A receptor antagonist on murine lupus nephritis. Kidney Int. 47, 481–489 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Berthold, H., Munter, K., Just, A., Kirchheim, H. R. & Ehmke, H. Contribution of endothelin to renal vascular tone and autoregulation in the conscious dog. Am. J. Physiol. 276, F417–F424 (1999).

    CAS  PubMed  Google Scholar 

  79. Imai, T. et al. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension 19, 753–757 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Goddard, J. et al. Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patients with chronic renal failure: a comparison of selective and combined endothelin receptor blockade. Circulation 109, 1186–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Pierre-Paul, D. & Gahtan, V. Noncholesterol-lowering effects of statins. Vasc. Endovascular Surg. 37, 301–313 (2003).

    Article  PubMed  Google Scholar 

  83. Li, C. et al. Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am. J. Physiol. Renal Physiol. 286, F46–F57 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Vieira, J. M., Jr et al. Simvastatin attenuates renal inflammation, tubular transdifferentiation and interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrol. Dial. Transplant. 20, 1582–1591 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Massy, Z. A., Keane, W. F. & Kasiske, B. L. Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 347, 102–103 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Zoja, C. et al. Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney Int. 61, 1635–1645 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Douglas, K., O'Malley, P. G. & Jackson, J. L. Meta-analysis: the effect of statins on albuminuria. Ann. Intern. Med. 145, 117–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Strippoli, G. F. et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. Bmj 336, 645–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sandhu, S., Wiebe, N., Fried, L. F. & Tonelli, M. Statins for improving renal outcomes: a meta-analysis. J. Am. Soc. Nephrol. 17, 2006–2016 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Guthrie, R. M. & Martin, D. R. The safety of rosuvastatin: effects on renal and hepatic function. Expert Opin. Drug Saf. 6, 573–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Baigent, C. & Landry, M. Study of Heart and Renal Protection (SHARP). Kidney Int. Suppl. S207–S210 (2003).

  92. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Khan, S. B. et al. Antibody blockade of TNF-α reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 67, 1812–1820 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Meldrum, K. K. et al. TNF-α neutralization ameliorates obstruction-induced renal fibrosis and dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1456–R1464 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. Jama 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Huugen, D., Cohen Tervaert, J. W. & Heeringa, P. TNF-α bioactivity-inhibiting therapy in ANCA-associated vasculitis: clinical and experimental considerations. Clin. J. Am. Soc. Nephrol. 1, 1100–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Sean Eardley, K. & Cockwell, P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 68, 437–455 (2005).

    Article  PubMed  Google Scholar 

  99. Kitagawa, K. et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Pathol. 165, 237–246 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lloyd, C. M. et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185, 1371–1380 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anders, H. J. et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vielhauer, V. et al. CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int. 66, 2264–2278 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Topham, P. S. et al. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J. Clin. Invest. 104, 1549–1557 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cioli, V. et al. A new protein antidenaturant agent, bindarit, reduces secondary phase of adjuvant arthritis in rats. J. Rheumatol. 19, 1735–1742 (1992).

    CAS  Google Scholar 

  105. Zoja, C. et al. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease. Kidney Int. 53, 726–734 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Guglielmotti, A. & Dionisio, P. A pharmaceutical composition for the treatment of autoimmune diseases. WO9716185 (1997).

  107. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Gerard, N. P. & Gerard, C. The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614–617 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Wang, Y. et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc. Natl Acad. Sci. USA 93, 8563–8568 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Cybulsky, A. V., Quigg, R. J. & Salant, D. J. Experimental membranous nephropathy redux. Am. J. Physiol. Renal Physiol. 289, F660–F671 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Appel, G. et al. Eculizumab (C5 complement inhibitor) in the treatment of idiopathic membranous nephropathy (IMN): preliminary baseline and pharmacokinetic (PK)/pharmacodynamic (PD) data. J. Am. Soc. Nephrol. 13, 668A (2002).

    Google Scholar 

  113. Yu, L., Border, W. A., Huang, Y. & Noble, N. A. TGF-β isoforms in renal fibrogenesis. Kidney Int. 64, 844–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Massague, J. & Gomis, R. R. The logic of TGFβ signaling. FEBS Lett. 580, 2811–2820 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Shihab, F. S., Bennett, W. M., Yi, H. & Andoh, T. F. Pirfenidone treatment decreases transforming growth factor-β1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am. J. Transplant. 2, 111–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Cain, W. C. et al. Inhibition of tumor necrosis factor and subsequent endotoxin shock by pirfenidone. Int. J. Immunopharmacol. 20, 685–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Giri, S. N., Leonard, S., Shi, X., Margolin, S. B. & Vallyathan, V. Effects of pirfenidone on the generation of reactive oxygen species in vitro. J. Environ. Pathol. Toxicol. Oncol. 18, 169–177 (1999).

    CAS  PubMed  Google Scholar 

  118. Callahan, J. F. et al. Identification of novel inhibitors of the transforming growth factor beta1 (TGF-β1) type 1 receptor (ALK5). J. Med. Chem. 45, 999–1001 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Petersen, M. et al. Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int. 73, 705–715 (2008). An interesting demonstration of the renoprotective effect of a new TGF- β receptor kinase inhibitor in db/db mice with potential clinical application.

    Article  CAS  PubMed  Google Scholar 

  120. Gellibert, F. et al. Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H- pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-β type I receptor inhibitor. J. Med. Chem. 49, 2210–2221 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shimizu, T. et al. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int. Suppl. 63, S239–S243 (1997).

    CAS  PubMed  Google Scholar 

  123. Shimizu, T. et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int. 54, 99–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Grygielko, E. T. et al. Inhibition of gene markers of fibrosis with a novel inhibitor of transforming growth factor-β type I receptor kinase in puromycin-induced nephritis. J. Pharmacol. Exp. Ther. 313, 943–951 (2005).

    Article  CAS  Google Scholar 

  125. Benigni, A. et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol. 14, 1816–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lebovitz, H. E. & Banerji, M. A. Insulin resistance and its treatment by thiazolidinediones. Recent Prog. Horm. Res. 56, 265–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Lebovitz, H. E., Kreider, M. & Freed, M. I. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 25, 815–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Isshiki, K. et al. Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 49, 1022–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Panchapakesan, U., Pollock, C. A. & Chen, X. M. The effect of high glucose and PPAR-γ agonists on PPAR-γ expression and function in HK-2 cells. Am. J. Physiol. Renal Physiol. 287, F528–F534 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Ohga, S. et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-κB activation. Am. J. Physiol. Renal Physiol. 292, F1141–F1150 (2007).

    Article  CAS  Google Scholar 

  132. Miyazaki, Y., Cersosimo, E., Triplitt, C. & DeFronzo, R. A. Rosiglitazone decreases albuminuria in type 2 diabetic patients. Kidney Int. 72, 1367–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Jin, H. M. & Pan, Y. Renoprotection provided by losartan in combination with pioglitazone is superior to renoprotection provided by losartan alone in patients with type 2 diabetic nephropathy. Kidney Blood Press. Res. 30, 203–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Drazen, J. M., Morrissey, S. & Curfman, G. D. Rosiglitazone — continued uncertainty about safety. N. Engl. J. Med. 357, 63–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Goligorsky, M. S., Chaimovitz, C., Rapoport, J., Goldstein, J. & Kol, R. Calcium metabolism in uremic nephrocalcinosis: preventive effect of verapamil. Kidney Int. 27, 774–779 (1985).

    Article  CAS  PubMed  Google Scholar 

  136. Schrier, R. W., Shapiro, J. I., Chan, L. & Harris, D. C. Increased nephron oxygen consumption: potential role in progression of chronic renal disease. Am. J. Kidney Dis. 23, 176–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Aschenbrenner, J. K., Sollinger, H. W., Becker, B. N. & Hullett, D. A. 1,25-(OH2)D3 alters the transforming growth factor beta signaling pathway in renal tissue. J. Surg. Res. 100, 171–175 (2001).

    Article  CAS  Google Scholar 

  138. Zhang, Z. et al. 1,25-Dihydroxyvitamin D3 targeting of NF-κB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 72, 193–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Li, Y. C. et al. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin–angiotensin system. J. Clin. Invest. 110, 229–238 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tan, X., Wen, X. & Liu, Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-κB signaling. J. Am. Soc. Nephrol. 19, 1741–1752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Levin, A. & Li, Y. C. Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 68, 1973–1981 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Mizobuchi, M. et al. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J. Am. Soc. Nephrol. 18, 1796–1806 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Panichi, V. et al. Effects of 1,25(OH2)D3 in experimental mesangial proliferative nephritis in rats. Kidney Int. 60, 87–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Tan, X., Li, Y. & Liu, Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J. Am. Soc. Nephrol. 17, 3382–3393 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Agarwal, R. et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int. 68, 2823–2828 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Alborzi, P. et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension 52, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Abdel Wahab, N. & Mason, R. M. Connective tissue growth factor and renal diseases: some answers, more questions. Curr. Opin. Nephrol. Hypertens. 13, 53–58 (2004).

    Article  PubMed  Google Scholar 

  148. Burns, W. C. et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J. Am. Soc. Nephrol. 17, 2484–2494 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Okada, H. et al. Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J. Am. Soc. Nephrol. 16, 133–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Yokoi, H. et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 15, 1430–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Ostendorf, T. et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 12, 909–918 (2001).

    CAS  PubMed  Google Scholar 

  152. Wang, S., Wilkes, M. C., Leof, E. B. & Hirschberg, R. Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. Faseb J. 19, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Zoja, C. et al. Imatinib ameliorates renal disease and survival in murine lupus autoimmune disease. Kidney Int. 70, 97–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Lassila, M. et al. Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice. J. Am. Soc. Nephrol. 16, 363–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Med. 12, 908–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Berman, E. et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N. Engl. J. Med. 354, 2006–2013 (2006).

    Article  CAS  Google Scholar 

  158. Caenepeel, S., Charydczak, G., Sudarsanam, S., Hunter, T. & Manning, G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc. Natl Acad. Sci. USA 101, 11707–11712 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Obligado, S. H., Ibraghimov-Beskrovnaya, O., Zuk, A., Meijer, L. & Nelson, P. J. CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Kidney Int. 73, 684–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Lee, M. J. et al. Indirubin-3′-monoxime, a derivative of a Chinese anti-leukemia medicine, inhibits Notch1 signaling. Cancer Lett. 265, 215–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nature Med. 14, 290–298 (2008). First documentation that the NOTCH pathway has a role in the development of glomerular disease and that γ-secretase inhibitors not only prevented the development of albuminuria, but also lowered established albuminuria in experimental animals with nephrotic syndrome.

    Article  CAS  PubMed  Google Scholar 

  162. Pippin, J. W., Qu, Q., Meijer, L. & Shankland, S. J. Direct in vivo inhibition of the nuclear cell cycle cascade in experimental mesangial proliferative glomerulonephritis with Roscovitine, a novel cyclin-dependent kinase antagonist. J. Clin. Invest. 100, 2512–2520 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Griffin, S. V., Krofft, R. D., Pippin, J. W. & Shankland, S. J. Limitation of podocyte proliferation improves renal function in experimental crescentic glomerulonephritis. Kidney Int. 67, 977–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Gherardi, D. et al. Reversal of collapsing glomerulopathy in mice with the cyclin-dependent kinase inhibitor CYC202. J. Am. Soc. Nephrol. 15, 1212–1222 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Zoja, C. et al. Cyclin-dependent kinase inhibition limits glomerulonephritis and extends lifespan of mice with systemic lupus. Arthritis Rheum. 56, 1629–1637 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Benigni, A. et al. Involvement of renal tubular Toll-like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis Rheum. 56, 1569–1578 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Nelson, P. J. & Shankland, S. J. Therapeutics in renal disease: the road ahead for antiproliferative targets. Nephron Exp. Nephrol. 103, e6–e15 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Wolfe, M. S. Therapeutic strategies for Alzheimer's disease. Nature Rev. Drug Discov. 1, 859–866 (2002).

    Article  CAS  Google Scholar 

  170. Shearman, M. S. et al. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity. Biochemistry 39, 8698–8704 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Vujovic, S., Henderson, S. R., Flanagan, A. M. & Clements, M. O. Inhibition of γ-secretases alters both proliferation and differentiation of mesenchymal stem cells. Cell Prolif. 40, 185–195 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Reff, M. E. et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–445 (1994).

    CAS  PubMed  Google Scholar 

  174. Coiffier, B. et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92, 1927–1932 (1998).

    CAS  PubMed  Google Scholar 

  175. Maloney, D. G. Concepts in radiotherapy and immunotherapy: anti-CD20 mechanisms of action and targets. Semin. Oncol. 32, S19–S26 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Ruggenenti, P., Cravedi, P. & Remuzzi, G. Latest treatment strategies for membranous nephropathy. Expert Opin. Pharmacother. 8, 3159–3171 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Cohen, C. D. et al. CD20-positive infiltrates in human membranous glomerulonephritis. J. Nephrol. 18, 328–333 (2005).

    Google Scholar 

  178. Remuzzi, G. et al. Rituximab for idiopathic membranous nephropathy. Lancet 360, 923–924 (2002). First identification of a novel, specific therapy for idiopathic membranous nephropathy.

    Article  CAS  PubMed  Google Scholar 

  179. Ruggenenti, P. et al. Rituximab for idiopathic membranous nephropathy: who can benefit? Clin. J. Am. Soc. Nephrol. 1, 738–748 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Fervenza, F. et al. Variation in response to rituximab in the treatment of idiopathic membranous nephropathy (IMN): preliminary results at 1 year. J. Am. Soc. Nephrol. 14, A570 (2006).

    Google Scholar 

  181. Barsoum, R. S. Hepatitis C virus: from entry to renal injury — facts and potentials. Nephrol. Dial. Transplant. 22, 1840–1848 (2007).

    Article  PubMed  Google Scholar 

  182. Roccatello, D. et al. Long-term effects of anti-CD20 monoclonal antibody treatment of cryoglobulinaemic glomerulonephritis. Nephrol. Dial. Transplant. 19, 3054–3061 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Sfikakis, P. P. et al. Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum. 52, 501–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. van Vollenhoven, R. F. et al. Biopsy-verified response of severe lupus nephritis to treatment with rituximab (anti-CD20 monoclonal antibody) plus cyclophosphamide after biopsy-documented failure to respond to cyclophosphamide alone. Scand. J. Rheumatol. 33, 423–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Gottenberg, J. E. et al. Tolerance and short term efficacy of rituximab in 43 patients with systemic autoimmune diseases. Ann. Rheum. Dis. 64, 913–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Remuzzi, A. et al. ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int. 69, 1124–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  188. Ruggenenti, P. et al. In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. Investigators of the GISEN Group. Gruppo Italiano Studi Epidemiologici in Nefrologia. J. Am. Soc. Nephrol. 10, 997–1006 (1999).

    CAS  PubMed  Google Scholar 

  189. Fogo, A. B. New capillary growth: a contributor to regression of sclerosis? Curr. Opin. Nephrol. Hypertens. 14, 201–203 (2005).

    Article  PubMed  Google Scholar 

  190. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bahlmann, F. H. et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45, 526–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Morigi, M. et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J. Am. Soc. Nephrol. 15, 1794–1804 (2004).

    Article  PubMed  Google Scholar 

  193. Morigi, M. et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26, 2075–2082 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Fabry, J. Ein beitrag zur kenntnis der purpura hemorrhagica nodularis (purpura papulosa hemorrhagica hebrae). Arch. Derm. Syphilol. 43, 187–200 (1898).

    Article  Google Scholar 

  195. Schiffmann, R. et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. Jama 285, 2743–2749 (2001). A key study showing the efficacy of enzyme-replacement therapy with recombinant α-galactosidase A for Fabry's disease.

    Article  CAS  PubMed  Google Scholar 

  196. Thurberg, B. L. et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 62, 1933–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Eng, C. M. et al. Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet. Med. 8, 539–548 (2006).

    Article  PubMed  Google Scholar 

  198. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    Article  PubMed  Google Scholar 

  199. Torres, V. E. & Harris, P. C. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. Nature Clin. Pract. Nephrol. 2, 40–55 (2006).

    Article  CAS  Google Scholar 

  200. Ruggenenti, P. et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 68, 206–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tao, Y., Kim, J., Schrier, R. W. & Edelstein, C. L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 16, 46–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Walz, G. Therapeutic approaches in autosomal dominant polycystic kidney disease (ADPKD): is there light at the end of the tunnel? Nephrol. Dial. Transplant. 21, 1752–1757 (2006).

    Article  PubMed  Google Scholar 

  204. Nakamura, T., Miller, D., Ruoslahti, E. & Border, W. A. Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-β1. Kidney Int. 41, 1213–1221 (1992).

    Article  CAS  PubMed  Google Scholar 

  205. Laiho, M., Saksela, O. & Keski-Oja, J. Transforming growth factor-β induction of type-1 plasminogen activator inhibitor. Pericellular deposition and sensitivity to exogenous urokinase. J. Biol. Chem. 262, 17467–17474 (1987).

    CAS  PubMed  Google Scholar 

  206. Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  208. Soos, T. J., Meijer, L. & Nelson, P. J. CDK/GSK-3 inhibitors as a new approach for the treatment of proliferative renal diseases. Drug News Perspect. 19, 325–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Nelson, P. J., D'Agati, V. D., Gries, J. M., Suarez, J. R. & Gelman, I. H. Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol. J. Antimicrob. Chemother. 51, 921–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Milovanceva-Popovska, M. et al. R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury. Kidney Int. 67, 1362–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Lin, C. L. et al. Wnt/β-catenin signaling modulates survival of high glucose-stressed mesangial cells. J. Am. Soc. Nephrol. 17, 2812–2820 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Bukanov, N. O., Smith, L. A., Klinger, K. W., Ledbetter, S. R. & Ibraghimov-Beskrovnaya, O. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949–952 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to P. Ruggenenti, M. Abbate and B. Bikbov for their suggestions and criticisms. We also thank F. Gaspari for technical assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Remuzzi.

Supplementary information

Supplementary information S1 (box)

Renin-angiotensin-aldosterone cascade and site of action of specific inhibitors (PDF 510 kb)

Supplementary information S2 (box)

Effects of statins on cholesterol and beyond (PDF 242 kb)

Supplementary information S3 (table)

Effectiveness of therapeutic interventions in animal models of PKD (PDF 166 kb)

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov

FibroGen Clinical Trials

National Monitoring Centre for Clinical Trials

NKF, FDA Host Conference to Assess Proteinuria as a Surrogate Outcome in Chronic Kidney Disease

Glossary

Mesangial cell

A key cell of the glomerulus with enlarged cytoplasmic processes that extend around the capillary lumen and insinuate themselves between the glomerular basement membrane and the overlying endothelium.

Podocytes

The visceral epithelial cells of the glomerulus with large cytoplasmic processes that extend from the main body.

Glomerulosclerosis

Mesangial accumulation of hyaline material that progressively encroaches on capillary lumina, which obliterates the Bowman's space and results in global sclerosis of the glomerulus.

Slit diaphragm

A thin membrane that bridges the gap between adjacent foot processes of the podocytes near the glomerular basement membrane.

Albumnin/creatinine ratio

Ratio between the concentrations of albumin and creatinine measured in urine. It is used to detect early chronic nephropathy, particularly diabetic nephropathy.

Dahl salt-sensitive rat

An experimental model of hypertension and renal injury (glomerulosclerosis and tubulointerstitial damage) induced in rats sensitive to a high-salt diet.

Idiopathic membranous nephropathy

The most common cause for nephrotic syndrome in adults, which occurs as idiopathic (primary) disease of the kidney.

Nephrotic proteinuria

Urinary protein excretion of more than 3 g per day in the setting of glomerular disease.

Heymann nephritis

An experimental model of glomerular disease that mimics membranous nephropathy in humans.

Crescentic glomerulonephritis

An aggressive form of glomerulonephritis that is characterized by intensive glomerular inflammation, which induces epithelial cell proliferation and macrophage maturation (cellular crescents).

ANCA-associated vasculitis

An inflammatory disease involving blood vessels, also of the kidney, characterized by the concomitant presence of antineutrophil cytoplasmic antibodies (ANCA).

Db/db mouse

The db/db mouse is a hyperinsulinaemic model of genetic diabetes that develops abnormalities in renal morphology and function that mimic those in human diabetic nephropathy.

Puromycin-induced nephrotic syndrome

An experimental model of nephrotic syndrome that is characterized by heavy proteinuria and progressive glomerular and tubulointerstitial injury induced by single or repeated injections of the puromycin aminonucleoside.

Focal segmental glomerulosclerosis

A diagnostic term for a clinical pathological syndrome that has multiple aetiologies and pathogenic mechanisms characterized by proteinuria and focal segmental glomerular consolidation or scarring.

Collapsing glomerulopathy

Collapsing glomerulopathy is a morphological variant of focal segmental glomerulosclerosis that is characterized by segmental and global collapse of the glomerular capillaries, marked hypertrophy and hyperplasia of podocytes, and severe tubulointerstitial disease.

Intestinal crypts

Mucosal epithelium that is extensively invaginated.

Glomerular basement membrane

This is one of the components of filtration barrier between the blood and urinary space, which is composed of a central dense layer, the lamina densa, and two thinner, more electron-lucent layers, the lamina rara externa and the lamina rara interna.

Type II mixed essential cryoglobulinaemia

Cryoglobulinaemia refers to a pathogenic condition caused by the production of circulating immunoglobulins that precipitate upon cooling. Type II cryoglobulinaemia is defined as mixed cryoglobulins containing at least two immunoglobulins, and has no clear aetiology.

Systemic vasculitis

Systemic vasculitis comprises a large group of inflammatory diseases with a suggestive or proven immunopathogenesis involving blood vessels of various sizes and affecting various organs including the kidney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perico, N., Benigni, A. & Remuzzi, G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nat Rev Drug Discov 7, 936–953 (2008). https://doi.org/10.1038/nrd2685

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing