Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling cancer in human skin tissue

Key Points

  • Malignant conversion of human tissue can be achieved rapidly in a three-dimensionally faithful human tissue context that contains primary human cells, epithelial basement-membrane zone and extracellular matrix by using high-efficiency gene transfer and regeneration of human skin on immune-deficient mice.

  • Human skin tissue can be converted directly into the three most common human skin cancers by introducing as few as one, two or three specific, defined genetic elements that are implicated in the development of these tumours.

  • Malignant conversion to basal cell carcinoma can be achieved with only one genetic alteration in human skin — overexpression of active sonic hedgehog (SHH).

  • Lethal squamous-cell carcinoma can be induced in regenerated human skin through the expression of oncogenic HRAS and only one other genetic element that facilitates escape from G1 cell-cycle arrest, including cyclin-dependent kinase 4 (CDK4) or the nuclear factor-κB inhibitor, IκBα.

  • Induction of human melanocytic neoplasia that is indistinguishable from locally invasive malignant melanoma results from expression of oncogenic NRAS and the catalytic subunit of human telomerase reverse transcriptase (TERT) in combination with either CDK4 or dominant-negative p53.

  • Human-tissue cancer models indicate that genomic catastrophe and memory-based inflammatory immune responses are not required for epithelial carcinogenesis. These models also indicate that traditional in vitro measures of neoplastic transformation, such as immortalization and anchorage-independent growth on soft agar, might not be reliable surrogate measures of human tissue tumorigenicity in vivo.

  • The oncogenic potency of specific cancer-associated mutants such as BRAFV600E, the mutant that is most commonly found in malignant melanoma, can be directly tested in human tissue.

  • Human-tissue cancer models might facilitate the validation of therapeutic interventions against human protein targets in a native human tissue environment. An example of this is the identification of type VII collagen blockade as a strategy to inhibit neoplastic invasion across the cutaneous basement-membrane zone.

Abstract

The capacity to induce neoplasia in human tissue in the laboratory has recently provided a new platform for cancer research. Malignant conversion can be achieved in vivo by expressing genes of interest in human tissue that has been regenerated on immune-deficient mice. Induction of cancer in regenerated human skin recapitulates the three-dimensional architecture, tissue polarity, basement membrane structure, extracellular matrix, oncogene signalling and therapeutic target proteins found in intact human skin in vivo. Human-tissue cancer models therefore provide an opportunity to elucidate fundamental cancer mechanisms, to assess the oncogenic potency of mutations associated with specific human cancers and to develop new cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architectural comparison of human and mouse skin.
Figure 2: Diagram of the experimental approach for generating genetically defined human tissue cancers using skin as a model.
Figure 3: Selected protein networks that are altered in cutaneous neoplasia.
Figure 4: Histological features of the three most common types of skin cancer: BCC, SCC and malignant melanoma.

Similar content being viewed by others

References

  1. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  2. Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer 5, 675–688 (2005).

    Article  CAS  Google Scholar 

  3. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, P. B. et al. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genet. 37, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hahn, W. C. et al. Creation of human tumor cells with defined genetic elements. Nature 400, 464–468 (1999). Transformation of primary human cells was achieved using endogenous human and viral oncogenes, with malignancy confirmed by subcutaneous injection.

    Article  CAS  PubMed  Google Scholar 

  6. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alam, M. & Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 344, 975–983 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, D. L. & Weinstock, M. A. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol. 30, 774–778 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Diepgen, T. L. & Mahler, V. The epidemiology of skin cancer. Br. J. Dermatol. 146 (Suppl.), 1–6 (2002).

    Article  PubMed  Google Scholar 

  10. Fan, H., Oro, A. E., Scott, M. P. & Khavari, P. A. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med. 3, 788–792 (1997). SHH was overexpressed in keratinocytes to produce invasive tumours that were indistinguishable from BCC in the first direct malignant transformation of intact human tissue.

    Article  CAS  PubMed  Google Scholar 

  11. Lazarov, M. et al. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis. Nature Med. 8, 1105–1114 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003). References 11 and 12 describe a human tissue model of lethal epidermal SCC through expression of only two endogenous human genes, oncogenic Ras and a mediator of G1 escape.

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz-Urda, S. et al. Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307, 1773–1776 (2005). A combination of human genetics and human skin tissue models of cancer were used to identify a potential role for collagen VII, a normal BMZ constituent, in neoplastic invasion.

    Article  CAS  PubMed  Google Scholar 

  14. Chudnovsky, Y., Adams, A. E., Robbins, P. B., Lin, Q. & Khavari, P. A. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nature Genet. 37, 745–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, J. S. et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genet. 36, 1306–1311 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Anisimov, V. N., Ukraintseva, S. V. & Yashin, A. I. Cancer in rodents: does it tell us about cancer in humans? Nature Rev. Cancer 5, 807–819 (2005).

    Article  CAS  Google Scholar 

  20. Rangarajan, A., Hong, S. J., Gifford, A. & Weinberg, R. A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hamad, N. M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002). Tranforming actions of Ras were shown to be mediated through Ral in human fibroblasts and through Raf in mouse fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hahn, W. C. & Weinberg, R. A. Modelling the molecular circuitry of cancer. Nature Rev. Cancer 2, 331–341 (2002).

    Article  CAS  Google Scholar 

  23. Stenn, K. S. & Paus, R. Controls of hair follicle cycling. Physiol. Rev. 81, 449–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Menon, G. K. New insights into skin structure: scratching the surface. Adv. Drug Deliv. Rev. 54 (Suppl.), S3–S17 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, J. Y., Green, C. L., Tao, S. & Khavari, P. A. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev. 18, 17–22 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Berking, C. et al. Photocarcinogenesis in human adult skin grafts. Carcinogenesis 23, 181–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Brash, D. E. Sunlight and the onset of skin cancer. Trends Genet. 13, 410–414 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Khorshid, F. A. Comparative study of keloid formation in humans and laboratory animals. Med. Sci. Monit. 11, BR212–BR219 (2005).

    PubMed  Google Scholar 

  30. Donahue, B. A. et al. Selective uptake and sustained expression of AAV vectors following subcutaneous delivery. J. Gene Med. 1, 31–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7, 17–23 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vassar, R., Rosenberg, M., Ross, S., Tyner, A. & Fuchs, E. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice. Proc. Natl Acad. Sci. USA 86, 1563–1567 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailleul, B. et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62, 697–708 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Byrne, C. & Fuchs, E. Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice. Mol. Cell. Biol. 13, 3176–3190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Carroll, J. M., Albers, K. M., Garlick, J. A., Harrington, R. & Taichman, L. B. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc. Natl Acad. Sci. USA 90, 10270–10274 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothnagel, J. A., Greenhalgh, D. A., Gagne, T. A., Longley, M. A. & Roop, D. R. Identification of a calcium-inducible, epidermal-specific regulatory element in the 3′-flanking region of the human keratin 1 gene. J. Invest. Dermatol. 101, 506–513 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, K., Strathdee, D., Bryson, S., Lambie, W. & Balmain, A. The malignant capacity of skin tumours induced by expression of a mutant H-ras transgene depends on the cell type targeted. Curr. Biol. 8, 516–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vassar, R., Coulombe, P. A., Degenstein, L., Albers, K. & Fuchs, E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64, 365–380 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA 96, 8483–8488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choate, K. A., Medalie, D. A., Morgan, J. R. & Khavari, P. A. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Med. 2, 1263–1267 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Gordon, D. A., Fenjves, E. S., Williams, D. L. & Taichman, L. B. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implications for epidermal function and gene therapy. Proc. Natl Acad. Sci. USA 86, 8803–8807 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krueger, G. G. Fibroblasts and dermal gene therapy: a minireview. Hum. Gene Ther. 11, 2289–2296 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Baek, S. C., Lin, Q., Robbins, P. B., Fan, H. & Khavari, P. A. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum. Gene Ther. 12, 1551–1558 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Berking, C. et al. Induction of melanoma phenotypes in human skin by growth factors and ultraviolet B. Cancer Res. 64, 807–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Hengge, U. R., Chan, E. F., Foster, R. A., Walker, P. S. & Vogel, J. C. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nature Genet. 10, 161–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Siprashvili, Z. & Khavari, P. A. Lentivectors for regulated and reversible cutaneous gene delivery. Mol. Ther. 9, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Fan, H., Lin, Q. & Khavari, P. A. Durable cutaneous gene delivery via direct administration of adenoviral and lentiviral vectors to human skin. J. Invest. Dermatol. 112, 638 (1999).

    Google Scholar 

  50. Robbins, P. B. et al. In vivo restoration of laminin 5 β3 expression and function in junctional epidermolysis bullosa. Proc. Natl Acad. Sci. USA 98, 5193–5198 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ortiz-Urda, S. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J. Clin. Invest. 111, 251–255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ortiz-Urda, S. et al. Stable nonviral genetic correction of inherited human skin disease. Nature Med. 8, 1166–1170 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Medalie, D. A. et al. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Nickoloff, B. J. & Wrone-Smith, T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am. J. Pathol. 155, 145–158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Porteus, M. H. Mammalian gene targeting with designed zinc finger nucleases. Mol. Ther. 13, 438–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, J. et al. Telomerized human microvasculature is functional in vivo. Nature Biotechnol. 19, 219–224 (2001).

    Article  CAS  Google Scholar 

  57. Supp, D. M., Wilson-Landy, K. & Boyce, S. T. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J. 16, 797–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Bevona, C. & Sober, A. J. Melanoma incidence trends. Dermatol. Clin. 20, 589–595 (2002).

    Article  PubMed  Google Scholar 

  59. Spates, S. T., Mellette, J. R. Jr & Fitzpatrick, J. Metastatic basal cell carcinoma. Dermatol. Surg. 29, 650–652 (2003).

    PubMed  Google Scholar 

  60. High, A. & Zedan, W. Basal cell nevus syndrome. Curr. Opin. Oncol. 17, 160–166 (2005).

    Article  PubMed  Google Scholar 

  61. Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic Hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Oro, A. E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet. 24, 216–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Fan, H. & Khavari, P. A. Sonic hedgehog opposes epithelial cell cycle arrest. J. Cell Biol. 147, 71–76 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nature Rev. Cancer 5, 564–573 (2005).

    Article  CAS  Google Scholar 

  67. Mason, P. J., Wilson, D. B. & Bessler, M. Dyskeratosis congenita — a disease of dysfunctional telomere maintenance. Curr. Mol. Med. 5, 159–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Mallipeddi, R. Epidermolysis bullosa and cancer. Clin. Exp. Dermatol. 27, 616–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T. & Ananthaswamy, H. N. Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol. Carcinog. 4, 196–202 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. von Lintig, F. C. et al. Ras activation in human breast cancer. Breast Cancer Res. Treat. 62, 51–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Hoa, M., Davis, S. L., Ames, S. J. & Spanjaard, R. A. Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res. 62, 7154–7156 (2002).

    CAS  PubMed  Google Scholar 

  72. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, J. Y., Tao, S., Kimmel, R. & Khavari, P. A. CDK4 regulation by TNFR1 and JNK is required for NF-κB-mediated epidermal growth control. J. Cell Biol. 168, 561–566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miliani de Marval, P. L., Macias, E., Conti, C. J. & Rodriguez-Puebla, M. L. Enhanced malignant tumorigenesis in Cdk4 transgenic mice. Oncogene 23, 1863–1873 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chudnovsky, Y., Khavari, P. A. & Adams, A. E. Melanoma genetics and the development of rational therapeutics. J. Clin. Invest. 115, 813–824 (2005). This study showed that tumours formed in regenerated human skin tissue by alterations in as few as three genes are indistinguishable from malignant melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodolfo, M., Daniotti, M. & Vallacchi, V. Genetic progression of metastatic melanoma. Cancer Lett. 214, 133–147 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Ramirez, R. D. et al. Progressive increase in telomerase activity from benign melanocytic conditions to malignant melanoma. Neoplasia 1, 42–49 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pirker, C. et al. Chromosomal imbalances in primary and metastatic melanomas: over-representation of essential telomerase genes. Melanoma Res. 13, 483–492 (2003).

    Article  PubMed  Google Scholar 

  80. Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. N. Engl. J. Med. 347, 1593–1603 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Boehm, J. S., Hession, M. T., Bulmer, S. E. & Hahn, W. C. Transformation of human and murine fibroblasts without viral oncoproteins. Mol. Cell. Biol. 25, 6464–6474 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  83. Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell Biol. 10, 147–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Dajee, M., Tarutani, M., Deng, H., Cai, T. & Khavari, P. A. Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21, 1527–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Bolotin, D. & Fuchs, E. Cancer: more than skin deep. Nature 421, 594–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Ashton, K. J., Weinstein, S. R., Maguire, D. J. & Griffiths, L. R. Chromosomal aberrations in squamous cell carcinoma and solar keratoses revealed by comparative genomic hybridization. Arch. Dermatol. 139, 876–882 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Casorzo, L. et al. Fluorescence in situ hybridization (FISH) evaluation of chromosomes 6, 7, 9 and 10 throughout human melanocytic tumorigenesis. Melanoma Res. 15, 155–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benjamin, T. & Vogt, P. K. in Virology (eds Fields, B. N. & Knipe, D. M.) 317–367 (Raven Press, New York, 1990).

    Google Scholar 

  90. Proby, C. M. et al. Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp. Dermatol. 9, 104–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Buell, J. F., Hanaway, M. J., Thomas, M., Alloway, R. R. & Woodle, E. S. Skin cancer following transplantation: the Israel Penn International Transplant Tumor Registry experience. Transplant Proc. 37, 962–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Curtin, J. A. et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135–2147 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Tsao, H., Goel, V., Wu, H., Yang, G. & Haluska, F. G. Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337–341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Savoia, P., Trusolino, L., Pepino, E. & Marchisio, P. C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of α6β4 and BM-600/nicein. J. Invest. Dermatol. 101, 352–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Baker, M. Upping the ante on antibodies. Nature Biotechnol. 23, 1065–1072 (2005).

    Article  CAS  Google Scholar 

  99. Yuspa, S. H. & Epstein, E. H. Jr. Cancer. An anchor for tumor cell invasion. Science 307, 1727–1728 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA 101, 4966–4971 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Tuveson, D. A. & Jacks, T. Technologically advanced cancer modeling in mice. Curr. Opin. Genet. Dev. 12, 105–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Edwards, M. J., Hirsch, R. M., Broadwater, J. R., Netscher, D. T. & Ames, F. C. Squamous cell carcinoma arising in previously burned or irradiated skin. Arch. Surg. 124, 115–117 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Green, C. L. & Khavari, P. Targets for molecular therapy of skin cancer. Semin. Cancer Biol. 14, 63–69 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A. Oro, M. P. Marinkovich, E. Epstein, H. Chang, D. Felsher, L. Attardi, J. Sage, S. Artandi, Z. Siprashvili, J. Reuter, P. Dumesic, R. Kimmel, T. Ridky, A. Adams, H. Lee, J. Zhang, J. Chudnovsky, J. Garcia, F. Scholl and S. Ortiz-Urda provided critical pre-submission review and helpful comments. S. Kohler and F. Scholl generously provided histology specimens. This work was supported by the Veterans Affairs Office of Research and Development, and by the NIH/NIAMS.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

kidney cancer

lung cancer

melanoma

prostate cancer

skin cancer

FURTHER INFORMATION

SEER Cancer Statistics Review

Sanger Institute Catalogue of Somatic Mutations in Cancer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khavari, P. Modelling cancer in human skin tissue. Nat Rev Cancer 6, 270–280 (2006). https://doi.org/10.1038/nrc1838

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing