Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids

Abstract

A protocol is described for the incorporation of nitroxide spin-labels into specific 2′-sites within nucleic acids. This labeling strategy facilitates the investigation of nucleic acid structure and dynamics using electron paramagnetic resonance (EPR) spectroscopy and macromolecular complex formation using paramagnetic relaxation enhancement NMR spectroscopy. A spin-labeling reagent, 4-isocyanato TEMPO, which can be prepared in one facile step or obtained commercially, is used for postsynthetic modification of site-specifically 2′-amino-modified nucleic acids. This spin-labeling protocol has been applied primarily to RNA, but is also applicable to DNA. Subsequently, EPR spectroscopic analysis of the spin-labeled nucleic acids allows for the measurements of distances, solvent accessibilities and conformation dynamics. Using the spin-labeling strategy described here, spin-labeled samples can be prepared in 2–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron paramagnetic resonance (EPR) spectroscopy of 2′-spin-labeled hammerhead ribozymes obtained using the spin-labeling strategy presented here.
Figure 2
Figure 3: Electron paramagnetic resonance (EPR) spectra of 2′-spin-labeled RNA.

Similar content being viewed by others

References

  1. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Qin, P.Z. & Dieckmann, T. Application of NMR and EPR methods to the study of RNA. Curr. Opin. Struct. Biol. 14, 350–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Fanucci, G.E. & Cafiso, D.S. Recent advances and applications of site-directed spin labeling. Curr. Opin. Struct. Biol. 16, 644–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Karim, C.B., Zhang, Z. & Thomas, D.D. Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes. Nat. Protoc. 2, 42–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, T.E., Okonogi, T.M., Robinson, B.H. & Sigurdsson, S.T. Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J. Am. Chem. Soc. 123, 1527–1528 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Edwards, T.E., Okonogi, T.M. & Sigurdsson, S.T. Investigation of RNA-protein and RNA-metal ion interactions by electron paramagnetic resonance spectroscopy. The HIV TAR-Tat motif. Chem. Biol. 9, 699–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Edwards, T.E. & Sigurdsson, S.T. EPR spectroscopic analysis of TAR RNA-metal ion interactions. Biochem. Biophys. Res. Commun. 303, 721–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Edwards, T.E. & Sigurdsson, S.T. Electron paramagnetic resonance dynamic signatures of TAR RNA-small molecule complexes provide insight into RNA structure and recognition. Biochemistry 41, 14843–14847 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Edwards, T.E., Robinson, B.H. & Sigurdsson, S.T. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. Chem. Biol. 12, 329–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, N.K., Murali, A. & DeRose, V.J. Separate metal requirements for loop interactions and catalysis in the extended hammerhead ribozyme. J. Am. Chem. Soc. 127, 14134–14135 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edwards, T.E. & Sigurdsson, S.T. EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding. Biochemistry 44, 12870–12878 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Schiemann, O., Weber, A., Edwards, T.E., Prisner, T.F. & Sigurdsson, S.T. Nanometer distance measurements on RNA using PELDOR. J. Am. Chem. Soc. 125, 3434–3435 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Leulliot, N. et al. A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III. EMBO J. 23, 2468–2477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pham, J.W., Radhakrishnan, I. & Sontheimer, E.J. Thermodynamic and structural characterization of 2′-nitrogen-modified RNA duplexes. Nucleic Acids Res. 32, 3446–3455 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barhate, N., Cekan, P., Massey, A.P. & Sigurdsson, S.T. A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew. Chem. Int. Ed. Engl. 46, 2655–2658 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Macosko, J.C., Pio, M.S., Tinoco, I. Jr. & Shin, Y.K. A novel 5 displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA 5, 1158–1166 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grant, G.P. & Qin, P.Z. A facile method for attaching nitroxide spin labels at the 5′ terminus of nucleic acids. Nucleic Acids Res. 35, e77 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Caron, M. & Dugas, H. Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res. 3, 19–34 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin, P.Z., Butcher, S.E., Feigon, J. & Hubbell, W.L. Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40, 6929–6936 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, N.K., Murali, A. & DeRose, V.J. A distance ruler for RNA using EPR and site-directed spin labeling. Chem. Biol. 11, 939–948 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hara, H., Horiuchi, T., Saneyoshi, M. & Nishimura, S. 4-Thiouridine-specific spin-labeling of E. coli transfer RNA. Biochem. Biophys. Res. Commun. 38, 305–311 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. Ramos, A. & Varani, G. A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J. Am. Chem. Soc. 120, 10992–10993 (1998).

    Article  CAS  Google Scholar 

  23. Qin, P.Z., Hideg, K., Feigon, J. & Hubbell, W.L. Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42, 6772–6783 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Qin, P.Z., Feigon, J. & Hubbell, W.L. Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent docking of a GAAA tetraloop. J. Mol. Biol. 351, 1–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Schiemann, O. et al. Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat. Protoc. 2, 904–923 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Piton, N. et al. Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res. 35, 3128–3143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naber, N. et al. Closing of the nucleotide pocket of kinesin-family motors upon binding to microtubules. Science 300, 798–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Höbartner, C. et al. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J. Am. Chem. Soc. 127, 12035–12045 (2005).

    Article  PubMed  Google Scholar 

  29. Martick, M. & Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kristmann Gislason and Pavol Cekan for their help with manuscript preparation. T.E.E. is a Damon Runyon Cancer Research Foundation Postdoctoral Fellow in the laboratory of Adrian R. Ferré-D'Amaré at the Fred Hutchinson Cancer Research Center in Seattle, Washington, USA (DRG-1844-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorri Th Sigurdsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, T., Sigurdsson, S. Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids. Nat Protoc 2, 1954–1962 (2007). https://doi.org/10.1038/nprot.2007.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.273

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing