Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A light microscope-based double retrograde tracer strategy to chart central neuronal connections

Abstract

This protocol describes a double retrograde tracing method to chart divergent projections in the CNS using light microscope techniques. It is based on immunohistochemical visualization of retrograde transport of cholera toxin b-subunit (CTb) and silver enhancement of a gold–lectin conjugate. Production of the gold–lectin is explained in detail, and a technique is offered to record through the injection pipettes, to help guide accurate placement of injections. Visualization of the two tracers results in light brown staining of CTb-labeled neurons and labeling by black particles of gold–lectin-containing neurons. Both types of label are easily recognized in the same neuron. The labeling is permanent and is well suited for studies in which large areas of the brain need to be surveyed. The whole procedure (excluding survival time) takes approximately 5–7 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the experimental set-up for electrophysiological recording followed by either pressure injection (gold–lectin) or iontophoresis (cholera toxin b-subunit, or CTb) through the same pipette.
Figure 2: Examples of complex spike (stars) and simple spike activity of Purkinje cells recorded in lobule VIII of the cerebellum.
Figure 3: Photomicrographs depicting the typical appearance of injection sites and neurons retrogradely labeled with cholera toxin b-subunit (CTb) and the gold–lectin conjugate.

Similar content being viewed by others

References

  1. Apps, R. & Ruigrok, T.J.H. A fluorescence-based double retrograde tracer strategy for charting central neuronal connections. Nat. Protoc. 2, 1862–1868 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  2. Luppi, P.-H., Fort, P. & Jouvet, M. Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrodradely labeled neurons. Brain Res. 534, 209–224 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  3. Ruigrok, T.J.H., Teune, T.M., van der Burg, J. & Sabel-Goedknegt, H. A retrograde double labeling technique for light microscopy. A combination of axonal transport of cholera toxin B-subunit and a gold-lectin conjugate. J. Neurosci. Meth. 61, 127–138 (1995).

    Article  CAS  Google Scholar 

  4. Roth, J. The colloidal gold marker system for light and electron microscopic cytochemistry. In Techniques in Immunocytochemistry Vol. 2 (eds. Bullock, G.R. & Petrusz, P.) 217–284 (Academic Press, London, 1983).

    Google Scholar 

  5. Gonatas, N.K., Harper, C., Mizutani, T. & Gonatas, J.O. Superior sensitivity of conjugates of horse radish peroxidase with wheat germ agglutinin for studies of retrograde axonal transport. J. Histochem. Cytochem. 27, 728–734 (1979).

    Article  CAS  PubMed Central  Google Scholar 

  6. Schwab, M.E., Javoy-Agid, F. & Agid, Y. Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res. 152, 145–150 (1978).

    Article  CAS  PubMed Central  Google Scholar 

  7. Basbaum, A.I. & Menétrey, D. Wheat germ agglutinin-apoHRP gold: a new retrograde tracer for light- and electronmicroscopic single- and double-label studies. J. Comp. Neurol. 261, 306–318 (1987).

    Article  CAS  PubMed Central  Google Scholar 

  8. Ericson, H. & Blomqvist, A. Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies. J. Neurosci. Methods 24, 225–235 (1988).

    Article  CAS  PubMed Central  Google Scholar 

  9. Chen, S. & Ashton-Jones, G. Evidence that cholera toxin B subunit (CTb) can be avidly taken up and transported by fibers of passage. Brain Res. 674, 107–111 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  10. Geoghegan, W.D. & Ackerman, G.A. Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J. Histochem. Cytochem. 25, 1187–1200 (1977).

    Article  CAS  PubMed Central  Google Scholar 

  11. Flecknell, P.A. Laboratory Animal Anaesthesia (Academic Press, London, 1987).

    Google Scholar 

  12. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1998).

    Google Scholar 

  13. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 2001).

    Google Scholar 

  14. Luppi, P.-H., Aston-Jones, G., Akaoka, H., Chouvet, G. & Jouvet, M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 65, 119–160 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  15. Pijpers, A. & Ruigrok, T.J. Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J. Comp. Neurol. 496, 513–528 (2006).

    Article  Google Scholar 

  16. Voogd, J., Pardoe, J., Ruigrok, T.J. & Apps, R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J. Neurosci. 23, 4645–4656 (2003).

    Article  CAS  Google Scholar 

  17. Menétrey, D. Retrograde tracing of neural pathways with a protein-gold complex. I. Light microscopic detection after silver intensification. Histochemistry 83, 391–395 (1985).

    Article  PubMed Central  Google Scholar 

  18. Koekkoek, S.K.E. & Ruigrok, T.J.H. Lack of bilateral projection of individual spinal neurons to the lateral reticular nucleus in the rat: a retrograde, non-fluorescent, double labeling study. Neurosci. Lett. 200, 13–16 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  19. Wentzel, P.R., Wylie, D.R., Ruigrok, T.J.H. & De Zeeuw, C.I. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci. Lett. 190, 45–48 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  20. Chen, S. & Aston-Jones, G. Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool. Neuroscience 82, 1151–1163 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  21. Pijpers, A., Apps, R., Pardoe, J., Voogd, J. & Ruigrok, T.J. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J. Neurosci. 26, 12067–12080 (2006).

    Article  CAS  Google Scholar 

  22. Menétrey, D. & Lee, C.L. Retrograde tracing of neural pathways with a protein gold complex. II. Electron microscopic demonstration of projections and collaterals. Histochemistry 83, 525–530 (1985).

    Article  PubMed Central  Google Scholar 

  23. Teune, T.M., van der Burg, J., De Zeeuw, C.I., Voogd, J. & Ruigrok, T.J.H. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J. Comp. Neurol. 392, 164–178 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  24. Jaarsma, D. et al. Cholinergic innervation and receptors in the cerebellum. In The cerebellum: From structure to control Vol. 114 (eds. De Zeeuw, C.I., Strata, P. & Voogd, J.) 67–96 (Elsevier, Amsterdam, 1997).

    Chapter  Google Scholar 

  25. Toonen, M. et al. Light microscopic and ultrastructural investigation of the dopaminergic innervation of the ventrolateral outgrowth of the rat inferior olive. Brain Res. 802, 267–273 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  26. Pijpers, A., Voogd, J. & Ruigrok, T.J. Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J. Comput. Neurol. 492, 193–213 (2005).

    Article  Google Scholar 

  27. Leman, S., Viltart, O. & Sequeira, H. Double immunocytochemistry for the detection of Fos protein in retrogradely identified neurons using cholera toxin B subunit. Brain Res. Brain Res. Protoc. 5, 298–304 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  28. Oldenbeuving, A.W., Eisenman, L.M., De Zeeuw, C.I. & Ruigrok, T.H. Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. Eur. J. Neurosci. 11, 3809–3822 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  29. Jongen-Relo, A.L. & Amaral, D.G. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur. J. Neurosci. 10, 2924–2933 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  30. Atkins, M.J. & Apps, R. Somatotopical organisation within the climbing fibre projection to the paramedian lobule and copula pyramidis of the rat cerebellum. J. Comput. Neurol. 389, 249–263 (1997).

    Article  CAS  Google Scholar 

  31. Apps, R. & Garwicz, M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Europ. J. Neurosci. 12, 205–214 (2000).

    Article  CAS  Google Scholar 

  32. King, V.M., Armstrong, D.M., Apps, R. & Trott, J.R. Numerical aspects of pontine, lateral reticular, and inferior olivary projections to two paravermal cortical zones of the cat cerebellum. J. Comput. Neurol. 390, 537–551 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supreme technical expertise of Hans van der Burg and Erika Sabel-Goedknegt in the development of this protocol. This work was supported by grants from the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust (to R.A.), and by the Netherlands Organisation for Scientific Research, Division of Earth and Life Sciences and the Dutch Ministry of Health, Welfare, and Sports (to T.J.H.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom J H Ruigrok.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruigrok, T., Apps, R. A light microscope-based double retrograde tracer strategy to chart central neuronal connections. Nat Protoc 2, 1869–1878 (2007). https://doi.org/10.1038/nprot.2007.264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.264

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing