Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics

Abstract

Recent progress in silicon photonics1,2,3,4,5,6,7,8 has dramatically advanced the possible realization of heterogeneous logic circuits9,10. A variety of Boolean optoelectronic circuits have been proposed11,12,13,14,15. In this context, experimental investigation of logic operations with both optical and electrical inputs in chip-integrable devices is highly desirable. Here, we present a new kind of photodiode-based logic device using scalable heterojunctions of carbon nanotubes and silicon, the output currents of which can be manipulated completely by both optical and electrical inputs. This provides a novel platform for heterogeneous optoelectronic logic elements with voltage-switchable photocurrent responsivity of >1 A W−1, photovoltage responsivity of >1 × 105 V W−1, electrical on/off ratios of >1 × 105 and optical on/off ratios of >1 × 104. To demonstrate their scalability, we fabricated a large array of photoactive elements on a centimetre-scale wafer. We also present bidirectional phototransistors and novel clock-triggerable logic elements such as a mixed optoelectronic AND gate, a 2-bit optoelectronic ADDER/OR gate and a 4-bit optoelectronic digital-to-analog converter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device structure and reverse-bias photoresponse.
Figure 2: Scalability and reproducibility.
Figure 3: Phototransistor and a hybrid logic gate.
Figure 4: Voltage-switchable 2-bit adder and a 4-bit digital-to-analog converter.

Similar content being viewed by others

References

  1. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  2. Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  ADS  Google Scholar 

  3. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  4. Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4, 182–187 (2010).

    Article  ADS  Google Scholar 

  5. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  6. Hofmann, W. H., Moser, P. & Bimberg, D. Energy-Efficient VCSELs for interconnects. IEEE Photon. J. 4, 652–656 (2012).

    Article  ADS  Google Scholar 

  7. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010).

    Article  ADS  Google Scholar 

  8. Bogaerts, W. et al. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).

    Article  ADS  Google Scholar 

  9. Liang, D., Roelkens, G., Baets, R. & Bowers, J. E. Hybrid integrated platforms for silicon photonics. Materials 3, 1782–1802 (2010).

    Article  ADS  Google Scholar 

  10. Lee, K.-W. et al. Three-dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for optoelectronic heterogeneous integrated systems. IEEE Trans. Electron. Dev. 58, 748–757 (2011).

    Article  ADS  Google Scholar 

  11. Krasilenko, V. G., Nikolsky, A. I., Lazarev, A. A. & Pavlov, S. N. Design and applications of a family of optoelectronic photocurrent logical elements on the basis of current mirror and comparators. Proc. SPIE 5948, 59481G 10.1117/12.851574(2005).

    Article  ADS  Google Scholar 

  12. Krasilenko, V. G., Ogorodnik, K. V., Nikolskyy, A. I. & Dubchak, V. N. Family of optoelectronic photocurrent reconfigurable universal (or multifunctional) logical elements (OPR ULE) on the basis of continuous logic operations (CLO) and current mirrors (CM). Proc. SPIE 8001, 80012Q doi:10.1117/12.894483(2011).

    Article  ADS  Google Scholar 

  13. Brackenbury, L. E. M. Optoelectronic differential multiplexer logic based on phototransistors/LEDs and its use in optical systems. IEE Proc. Optoelectron. 141, 401–408 (1994).

    Article  Google Scholar 

  14. Rao, E. S., Satyam, M. & Kishore, K. L. Electro-optical hybrid logic gates. Semicond. Phys. Quantum Electron. Optoelectron. 10, 1740–1742 (2009).

    Google Scholar 

  15. Fetterman, M. R. Design for high-speed optoelectronic Boolean logic. IEEE Photon. Technol. Lett. 21, 72–76 (2007).

    Google Scholar 

  16. Interconnect. CMOS-compatible optical interconnects and I/O, Section 5.3, page 58, in International Technology Roadmap for Semiconductors, 2011 edn; http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Interconnect.pdf

  17. Hofstein, S. & Heiman, F. The silicon insulated-gate field-effect transistor. Proc. IEEE 51, 1190–1202 (1963).

    Article  Google Scholar 

  18. Bertrand, G. et al. Towards the limits of conventional MOSFETs: case of sub 30 nm NMOS devices. Solid-State Electron. 48, 505–509 (2004).

    Article  ADS  Google Scholar 

  19. Stegeman, G., Hagan, D. & Torner, L. χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron. 28, 1691–1740 (1996).

    Article  Google Scholar 

  20. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  21. Jaber-Ansari, L. et al. Mechanism of very large scale assembly of SWNTs in template guided fluidic assembly process. J. Am. Chem. Soc. 131, 804–808 (2009).

    Article  Google Scholar 

  22. Xiong, X., Jaberansari, L., Hahm, M. G., Busnaina, A. & Jung, Y. J. Building highly organized single‐walled‐carbon‐nanotube networks using template‐guided fluidic assembly. Small 3, 2006–2010 (2007).

    Article  Google Scholar 

  23. Kim, Y. L. et al. Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects. ACS Nano 3, 2818–2826 (2009).

    Article  Google Scholar 

  24. Jia, Y. et al. Achieving high efficiency silicon–carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 11, 1901–1905 (2011).

    Article  ADS  Google Scholar 

  25. Wadhwa, P., Seol, G., Petterson, M. K., Guo, J. & Rinzler, A. G. Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett. 11, 2419–2423 (2011).

    Article  ADS  Google Scholar 

  26. Behnam, A. et al. Experimental characterization of single-walled carbon nanotube film–Si Schottky contacts using metal–semiconductor–metal structures. Appl. Phys. Lett. 92, 243116 (2008).

    Article  ADS  Google Scholar 

  27. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley-Interscience, 2006).

    Book  Google Scholar 

  28. Seidel, R. W. et al. High-current nanotube transistors. Nano Lett. 4, 831–834 (2004).

    Article  ADS  Google Scholar 

  29. Wen, J. et al. High-sensitivity photovoltage based on the interfacial photoelectric effect in the SrTiO3−δ/Si heterojunction. Sci. China Phys. Mech. Astron. 53, 2080–2083 (2010).

    Article  ADS  Google Scholar 

  30. Wang, J., Hu, J., Becla, P., Agarwal, A. M. & Kimerling, L. C. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform. Opt. Express 18, 12890–12896 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This experimental part of this project was mainly supported by a National Science Foundation (NSF) grant (award no. Division of Electrical, Communication and Cyber-Systems (ECCS)-1202376) and an NEU internal seed grant. Y.J.J. acknowledges partial support by NSF-Civil, Mechanical and Manufacturing Innovation (CMMI) (0927088). Y.K.K. and S.P. acknowledge financial support from the National Research Foundation of Korea (grants nos 2011-0002456 and 2012-0005146). A portion of the computational work was carried out using the resources of the KISTI Supercomputing Center (KSC-2012-C2-72 and KSC-2013-C2-024). Parts of the devices were fabricated at the Kostas Nanomanufacturing Center at NEU.

Author information

Authors and Affiliations

Authors

Contributions

Y.L.K., Y.J.J. and S.K. initiated the project and conceived the experiments. Y.L.K. fabricated and characterized the devices and analysed the data. H.Y.J. performed measurements and data analysis. B.L. fabricated devices and F.L. assisted with the optoelectronic measurement set-up. J.H. fabricated some of the devices in the final stages of the work. S.K. supervised the study with Y.-K.K. and Y.J.J. S.P. and Y.-K.K. simulated the results and proposed the device mechanism with S.K. All authors contributed to the analysis and commented on the work.

Corresponding authors

Correspondence to Young-Kyun Kwon, Yung Joon Jung or Swastik Kar.

Ethics declarations

Competing interests

At the time of submission, Northeastern University (Boston, USA) and Kyung Hee University (Seoul, Korea) were concurrently processing a patent application (PCT/US2013/60666).

Supplementary information

Supplementary information

Supplementary information (PDF 2078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Jung, H., Park, S. et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics. Nature Photon 8, 239–243 (2014). https://doi.org/10.1038/nphoton.2014.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing