Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires

Abstract

In ballistic thermal conduction, the wave characteristics of phonons allow the transmission of energy without dissipation. However, the observation of ballistic heat transport at room temperature is challenging because of the short phonon mean free path. Here we show that ballistic thermal conduction persisting over 8.3 µm can be observed in SiGe nanowires with low thermal conductivity for a wide range of structural variations and alloy concentrations. We find that an unexpectedly low percentage (0.04%) of phonons carry out the heat conduction process in SiGe nanowires, and that the ballistic phonons display properties including non-additive thermal resistances in series, unconventional contact thermal resistance, and unusual robustness against external perturbations. These results, obtained in a model semiconductor, could enable wave-engineering of phonons and help to realize heat waveguides, terahertz phononic crystals and quantum phononic/thermoelectric devices ready to be integrated into existing silicon-based electronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal conductivity test fixtures and structures of the SiGe nanowires.
Figure 2: κ versus L for more than 20 SiGe nanowires with different structures and alloy concentrations.
Figure 3: Demonstration of non-additive thermal resistances in series.
Figure 4: Length and diameter dependences of κ for SiGe nanowires.

Similar content being viewed by others

References

  1. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  2. Chiu, H. Y. et al. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 95, 226101 (2005).

    Article  Google Scholar 

  3. Zhu, G. H. et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Phys. Rev. Lett. 102, 196803 (2009).

    Article  CAS  Google Scholar 

  4. Bera, C., Mingo, N. & Volz, S. Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104, 115502 (2010).

    Article  Google Scholar 

  5. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011).

    Article  Google Scholar 

  6. Hu, M., Giapis, K. P., Goicochea, J. V., Zhang, X. & Poulikakos, D. Significant reduction of thermal conductivity in Si/Ge core–shell nanowires. Nano Lett. 11, 618–623 (2011).

    Article  CAS  Google Scholar 

  7. Yang, J. E., Jin, C. B., Kim, C. J. & Jo, M. H. Band-gap modulation in single-crystalline Si1–xGex nanowires. Nano Lett. 6, 2679–2684 (2006).

    Article  CAS  Google Scholar 

  8. Chang, H-K. & Lee, S-C. The growth and radial analysis of Si/Ge core–shell nanowires. Appl. Phys. Lett. 97, 251912 (2010).

    Article  Google Scholar 

  9. Rego, L. G. C. & Kirczenow, G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998).

    Article  CAS  Google Scholar 

  10. Steele, M. C. & Rosi, F. D. Thermal conductivity and thermoelectric power of germanium–silicon alloys. J. Appl. Phys. 29, 1517–1520 (1958).

    Article  CAS  Google Scholar 

  11. Koh, Y. K. & Cahill, D. G. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76, 075207 (2007).

    Article  Google Scholar 

  12. Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).

    Article  CAS  Google Scholar 

  13. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  CAS  Google Scholar 

  14. Prasher, R. Predicting the thermal resistance of nanosized constrictions. Nano Lett. 5, 2155–2159 (2005).

    Article  CAS  Google Scholar 

  15. Slack, G. A. & Hussain, M. A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. J. Appl. Phys. 70, 2694–2718 (1991).

    Article  CAS  Google Scholar 

  16. Liu, C-K. et al. Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 104, 114301 (2008).

    Article  Google Scholar 

  17. Minnich, A. J. et al. Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009).

    Article  Google Scholar 

  18. Meddins, H. R. & Parrott, J. E. Thermal and thermoelectric properties of sintered germanium–silicon alloys. J. Phys. C 9, 1263–1276 (1976).

    Article  CAS  Google Scholar 

  19. Lu, Q. et al. Raman scattering from Si1–xGex alloy nanowires. J. Phys. Chem. C 112, 3209–3215 (2008).

    Article  CAS  Google Scholar 

  20. Ju, Y. S. & Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999).

    Article  CAS  Google Scholar 

  21. Alvarez-Quintana, J., Rodriguez-Viejo, J., Alvarez, F. X. & Jou, D. Thermal conductivity of thin single-crystalline germanium-on-insulator structures. Int. J. Heat Mass Transf. 54, 1959–1962 (2011).

    Article  CAS  Google Scholar 

  22. Smith, C. G. Low-dimensional quantum devices. Rep. Prog. Phys. 59, 235–282 (1996).

    Article  CAS  Google Scholar 

  23. Li, D. Y. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  CAS  Google Scholar 

  24. Chen, R. K. et al. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101, 105501 (2008).

    Article  Google Scholar 

  25. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–165 (2008).

    Article  CAS  Google Scholar 

  26. Wingert, M. C. et al. Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507–5513 (2011).

    Article  CAS  Google Scholar 

  27. Rowe, D. M., Shukla, V. S. & Savvides, N. Phonon-scattering at grain-boundaries in heavily doped fine-grained silicon–germanium alloys. Nature 290, 765–766 (1981).

    Article  CAS  Google Scholar 

  28. Lee, E. K. et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano Lett. 12, 2918–2923 (2012).

    Article  CAS  Google Scholar 

  29. Yin, L. et al. The influence of phonon scatterings on the thermal conductivity of SiGe nanowires. Appl. Phys. Lett. 101, 043114 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of Taiwan (NSC101-2112-M-002-014-MY3) and Academia Sinica (AS-101-TP2-A01).

Author information

Authors and Affiliations

Authors

Contributions

T.K.H. conducted the thermal conductivity measurements and analysed the data. H.K.C. and S.C.L. contributed the nanowires. S.C.L. and M.W.C. performed the TEM characterizations. C.W.C. initiated the project, supervised it, and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Chih-Wei Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, TK., Chang, HK., Liou, SC. et al. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires. Nature Nanotech 8, 534–538 (2013). https://doi.org/10.1038/nnano.2013.121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing