Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons

Subjects

Abstract

Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation in the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA, named Kcna2 antisense RNA, for a voltage-dependent potassium channel mRNA, Kcna2, in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increased Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to the Kcna2 antisense RNA gene promoter. Mimicking this increase downregulated Kcna2, reduced total voltage-gated potassium current, increased excitability in DRG neurons and produced neuropathic pain symptoms. Blocking this increase reversed nerve injury–induced downregulation of DRG Kcna2 and attenuated development and maintenance of neuropathic pain. These findings suggest endogenous Kcna2 antisense RNA as a therapeutic target for the treatment of neuropathic pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and expression of Kcna2 antisense RNA in naive dorsal root ganglion.
Figure 2: Subpopulation distribution of Kcna2 antisense RNA–containing neurons in DRG of naive rats.
Figure 3: Distribution of Kcna2 protein and double labeling of Kcna2 antisense RNA with Kcna2 protein in normal rat DRG.
Figure 4: Changes in expression of DRG Kcna2 antisense RNA and Kcna2 after peripheral nerve injury.
Figure 5: MZF1 mediates nerve injury–induced upregulation of DRG Kcna2 antisense RNA.
Figure 6: Kcna2 antisense RNA specifically targets Kcna2.
Figure 7: Kcna2 antisense RNA overexpression in DRG reduces total voltage-gated potassium current, increases excitability in large and medium DRG neurons and produces neuropathic pain symptoms.
Figure 8: Blocking nerve injury–induced upregulation of DRG Kcna2 antisense RNA attenuates neuropathic pain.

References

  1. Campbell, J.N. & Meyer, R.A. Mechanisms of neuropathic pain. Neuron 52, 77–92 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chung, J.M. & Chung, K. Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Pract. 2, 87–97 (2002).

    Article  PubMed  Google Scholar 

  3. Devor, M. Ectopic discharge in Aβ afferents as a source of neuropathic pain. Exp. Brain Res. 196, 115–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Costigan, M., Scholz, J. & Woolf, C.J. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci. 32, 1–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Everill, B. & Kocsis, J.D. Nerve growth factor maintains potassium conductance after nerve injury in adult cutaneous afferent dorsal root ganglion neurons. Neuroscience 100, 417–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ishikawa, K., Tanaka, M., Black, J.A. & Waxman, S.G. Changes in expression of voltage-gated potassium channels in dorsal root ganglion neurons following axotomy. Muscle Nerve 22, 502–507 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, D.S., Choi, J.O., Rim, H.D. & Cho, H.J. Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve. Brain Res. Mol. Brain Res. 105, 146–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Park, S.Y. et al. Downregulation of voltage-gated potassium channel alpha gene expression by axotomy and neurotrophins in rat dorsal root ganglia. Mol. Cells 16, 256–259 (2003).

    CAS  PubMed  Google Scholar 

  9. Rasband, M.N. et al. Distinct potassium channels on pain-sensing neurons. Proc. Natl. Acad. Sci. USA 98, 13373–13378 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, E.K., Takimoto, K., Hayashi, Y., de Groat, W.C. & Yoshimura, N. Altered expression of potassium channel subunit mRNA and alpha-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy. Neuroscience 123, 867–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chabal, C., Jacobson, L., Russell, L.C. & Burchiel, K.J. Pain responses to perineuromal injection of normal saline, gallamine, and lidocaine in humans. Pain 36, 321–325 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Chien, L.Y., Cheng, J.K., Chu, D., Cheng, C.F. & Tsaur, M.L. Reduced expression of A-type potassium channels in primary sensory neurons induces mechanical hypersensitivity. J. Neurosci. 27, 9855–9865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devor, M. Potassium channels moderate ectopic excitability of nerve-end neuromas in rats. Neurosci. Lett. 40, 181–186 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Targ, E.F. & Kocsis, J.D. Action potential characteristics of demyelinated rat sciatic nerve following application of 4-aminopyridine. Brain Res. 363, 1–9 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Costa, F.F. Non-coding RNAs, epigenetics and complexity. Gene 410, 9–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Faghihi, M.A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10, 637–643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ponting, C.P., Oliver, P.L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Gibb, E.A., Brown, C.J. & Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 10, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wapinski, O. & Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol. 21, 354–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh, Y.H. et al. PKCα expression regulated by Elk-1 and MZF-1 in human HCC cells. Biochem. Biophys. Res. Commun. 339, 217–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Luo, X., Zhang, X., Shao, W., Yin, Y. & Zhou, J. Crucial roles of MZF-1 in the transcriptional regulation of apomorphine-induced modulation of FGF-2 expression in astrocytic cultures. J. Neurochem. 108, 952–961 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Fulton, S. et al. Contribution of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of axonal dopamine overflow. J. Biol. Chem. 286, 9360–9372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castle, N.A. et al. Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels. Mol. Pharmacol. 63, 409–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Visan, V., Fajloun, Z., Sabatier, J.M. & Grissmer, S. Mapping of maurotoxin binding sites on hKv1.2, hKv1.3, and hIKCa1 channels. Mol. Pharmacol. 66, 1103–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lavorgna, G. et al. In search of antisense. Trends Biochem. Sci. 29, 88–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rehm, H. & Tempel, B.L. Voltage-gated K+ channels of the mammalian brain. FASEB J. 5, 164–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Robbins, C.A. & Tempel, B.L. Kv1.1 and Kv1.2: similar channels, different seizure models. Epilepsia 53 (suppl. 1), 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Vacher, H. & Trimmer, J.S. Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch. 462, 631–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dodson, P.D., Barker, M.C. & Forsythe, I.D. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J. Neurosci. 22, 6953–6961 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, J.-L. et al. Enhanced excitability and down-regulated voltage-gated potassium channels in colonic DRG neurons from neonatal maternal separation rats. J. Pain 12, 600–609 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Cardenas, C.G. et al. Serotonergic modulation of hyperpolarization-activated current in acutely isolated rat dorsal root ganglion neurons. J. Physiol. (Lond.) 518, 507–523 (1999).

    Article  CAS  Google Scholar 

  32. Zheng, Q. et al. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain. Mol. Pain 8, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rinke, I., Artmann, J. & Stein, V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion. J. Neurosci. 30, 4776–4786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nicol, G.D., Vasko, M.R. & Evans, A.R. Prostaglandins suppress an outward potassium current in embryonic rat sensory neurons. J. Neurophysiol. 77, 167–176 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, Y.I. et al. Cell type-specific changes of the membrane properties of peripherally-axotomized dorsal root ganglion neurons in a rat model of neuropathic pain. Neuroscience 86, 301–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, C.N. et al. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85, 503–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Tal, M., Wall, P.D. & Devor, M. Myelinated afferent fiber types that become spontaneously active and mechanosensitive following nerve transection in the rat. Brain Res. 824, 218–223 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Weissner, W., Winterson, B.J., Stuart-Tilley, A., Devor, M. & Bove, G.M. Time course of substance P expression in dorsal root ganglia following complete spinal nerve transection. J. Comp. Neurol. 497, 78–87 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guan, X., Zhu, X. & Tao, Y.X. Peripheral nerve injury up-regulates expression of interactor protein for cytohesin exchange factor 1 (IPCEF1) mRNA in rat dorsal root ganglion. Naunyn Schmiedebergs Arch. Pharmacol. 380, 459–463 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh, O.V. et al. Proteome of synaptosome-associated proteins in spinal cord dorsal horn after peripheral nerve injury. Proteomics 9, 1241–1253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, B. et al. Effect of knock down of spinal cord PSD-93/chapsin-110 on persistent pain induced by complete Freund's adjuvant and peripheral nerve injury. Pain 106, 187–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bennett, G.J. & Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Park, J.S. et al. Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J. Neurosci. 29, 3206–3219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esumi, S., Kaneko, R., Kawamura, Y. & Yagi, T. Split single-cell RT-PCR analysis of Purkinje cells. Nat. Protoc. 1, 2143–2151 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Gallagher, P.E. & Diz, D.I. Analysis of RNA by northern-blot hybridization. Methods Mol. Med. 51, 205–213 (2001).

    CAS  PubMed  Google Scholar 

  46. Dong, X., Han, S., Zylka, M.J., Simon, M.I. & Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

    Article  CAS  Google Scholar 

  47. Nehmé, B., Henry, M. & Mouginot, D. Combined fluorescent in situ hybridization and immunofluorescence: limiting factors and a substitution strategy for slide-mounted tissue sections. J. Neurosci. Methods 196, 281–288 (2011).

    Article  PubMed  CAS  Google Scholar 

  48. Xu, J.T. et al. Expression and distribution of mTOR, p70S6K, 4E-BP1, and their phosphorylated counterparts in rat dorsal root ganglion and spinal cord dorsal horn. Brain Res 1336, 46–57 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Coggeshall, R.E. & Lekan, H.A. Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol. 364, 6–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Ling, L. et al. Protein kniase B/Akt is required for complete Freund's adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons. J. Pain 14, 638–647 (2013).

    Article  CAS  Google Scholar 

  51. Han, P.J., Shukla, S., Subramanian, P.S. & Hoffman, P.N. Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity. Exp. Neurol. 189, 293–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, Y. et al. Adeno-associated viral transfer of opioid receptor gene to primary sensory neurons: a strategy to increase opioid antinociception. Proc. Natl. Acad. Sci. USA 100, 6204–6209 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R.J. Samulski (University of North Carolina) for the rAAV5 plasmid, J. Zhou (Institute of Biochemistry of Cell Biology, Chinese Academy of Sciences) for the full-length EGFP-MZF1 plasmid and D.Y.H. Tuan (Georgia Health Sciences University) for MZF1 antibody. We thank C.F. Levine for editorial assistance. This work was supported by the Howard Hughes Medical Institute and US National Institutes of Health (NIH) grants (NS054791 and GM087369) to X.D., by NIH grants (MH084691 and GM078579) to M.L. and by NIH grants (DA033390, NS072206) and the grants from the Rita Allen Foundation to Y.-X.T.

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.T. conceived the project and supervised most experiments. X.Z., Z.T., H.Z., F.E.A., J.-Y.Z., Y.-J.G., H.C., M.L., X.D. and Y.-X.T. designed the project. X.Z., F.E.A., J.-Y.Z., L.L., W.W., X.G., S.-C.K. and V.T. performed molecular, biochemical and behavioral experiments. Z.T. and X.D. performed current-clamp experiments. H.Z. and M.L. performed voltage-clamp experiments. P.N.H. did microinjection. X.Z., Z.T., H.Z., F.E.A., J.-Y.Z. L.L., W.W., X.G., V.T. and Y.-X.T. analyzed the data. Y.-X.T. wrote the manuscript. All authors read and discussed the manuscript.

Corresponding author

Correspondence to Yuan-Xiang Tao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 1355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Tang, Z., Zhang, H. et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 16, 1024–1031 (2013). https://doi.org/10.1038/nn.3438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing