Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury

Abstract

Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous improvement in object retrieval with the hand after C7 lateral hemisection.
Figure 2: Partial recovery in forelimb use during locomotion after C7 hemisection.
Figure 3: Extensive recovery of hindlimb locomotion after C7 hemisection.
Figure 4: Extensive compensatory plasticity of the lesioned corticospinal tract in primates.
Figure 5: Relationship between anatomical plasticity and functional recovery.

Similar content being viewed by others

References

  1. Fawcett, J.W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).

    Article  CAS  Google Scholar 

  2. Courtine, G. et al. Performance of locomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 128, 2338–2358 (2005).

    Article  Google Scholar 

  3. Little, J.W. & Halar, E. Temporal course of motor recovery after Brown-Sequard spinal cord injuries. Paraplegia 23, 39–46 (1985).

    CAS  PubMed  Google Scholar 

  4. Roth, E.J., Park, T., Pang, T., Yarkony, G.M. & Lee, M.Y. Traumatic cervical Brown-Sequard and Brown-Sequard–plus syndromes: the spectrum of presentations and outcomes. Paraplegia 29, 582–589 (1991).

    CAS  PubMed  Google Scholar 

  5. Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    Article  CAS  Google Scholar 

  6. Bareyre, F.M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277 (2004).

    Article  CAS  Google Scholar 

  7. Lawrence, D.G. & Kuypers, H.G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 1–14 (1968).

    Article  CAS  Google Scholar 

  8. Hepp-Reymond, M.C., Trouche, E. & Wiesendanger, M. Effects of unilateral and bilateral pyramidotomy on a conditioned rapid precision grip in monkeys (Macaca fascicularis). Exp. Brain Res. 21, 519–527 (1974).

    Article  CAS  Google Scholar 

  9. Blesch, A. & Tuszynski, M.H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci. 32, 41–47 (2009).

    Article  CAS  Google Scholar 

  10. Rosenzweig, E.S. et al. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J. Comp. Neurol. 513, 151–163 (2009).

    Article  Google Scholar 

  11. Jenny, A.B. & Inukai, J. Principles of motor organization of the monkey cervical spinal cord. J. Neurosci. 3, 567–575 (1983).

    Article  CAS  Google Scholar 

  12. Havton, L. & Kellerth, J.O. Regeneration by supernumerary axons with synaptic terminals in spinal motoneurons of cats. Nature 325, 711–714 (1987).

    Article  CAS  Google Scholar 

  13. Courtine, G. et al. Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat. Med. 13, 561–566 (2007).

    Article  CAS  Google Scholar 

  14. Weidner, N., Ner, A., Salimi, N. & Tuszynski, M.H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513–3518 (2001).

    Article  CAS  Google Scholar 

  15. Brus-Ramer, M., Carmel, J.B., Chakrabarty, S. & Martin, J.H. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J. Neurosci. 27, 13793–13801 (2007).

    Article  CAS  Google Scholar 

  16. Ghosh, A. et al. Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J. Neurosci. 29, 12210–12219 (2009).

    Article  CAS  Google Scholar 

  17. Maier, I.C. et al. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. J. Neurosci. 28, 9386–9403 (2008).

    Article  CAS  Google Scholar 

  18. Lacroix, S. et al. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. J. Comp. Neurol. 473, 147–161 (2004).

    Article  Google Scholar 

  19. Raisman, G. Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14, 25–48 (1969).

    Article  CAS  Google Scholar 

  20. Dancause, N. et al. Extensive cortical rewiring after brain injury. J. Neurosci. 25, 10167–10179 (2005).

    Article  CAS  Google Scholar 

  21. Reader, T.A. & Dewar, K.M. Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: implications for human Parkinson's disease. Neurochem. Int. 34, 1–21 (1999).

    Article  CAS  Google Scholar 

  22. Nathan, P.W. & Smith, M.C. Effects of two unilateral cordotomies on the motility of the lower limbs. Brain 96, 471–494 (1973).

    Article  CAS  Google Scholar 

  23. Turner, W.A. On hemisection of the spinal cord. Brain 14, 496–522 (1891).

    Article  Google Scholar 

  24. Anderson, K.D., Gunawan, A. & Steward, O. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract. Exp. Neurol. 194, 161–174 (2005).

    Article  Google Scholar 

  25. Bunge, R.P., Puckett, W.R., Becerra, J.L., Marcillo, A. & Quencer, R.M. Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75–89 (1993).

    CAS  PubMed  Google Scholar 

  26. Kakulas, B.A. A review of the neuropathology of human spinal cord injury with emphasis on special features. J. Spinal Cord Med. 22, 119–124 (1999).

    Article  CAS  Google Scholar 

  27. Isa, T., Ohki, Y., Alstermark, B., Pettersson, L.G. & Sasaki, S. Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology (Bethesda) 22, 145–152 (2007).

    Google Scholar 

  28. Sasaki, S. et al. Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J. Neurophysiol. 92, 3142–3147 (2004).

    Article  Google Scholar 

  29. Steward, O., Sharp, K., Yee, K.M. & Hofstadter, M. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp. Neurol. 209, 446–468 (2008).

    Article  CAS  Google Scholar 

  30. Hollis, E.R. II, Lu, P., Blesch, A. & Tuszynski, M.H. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp. Neurol. 215, 53–59 (2009).

    Article  CAS  Google Scholar 

  31. Bradbury, E.J. & McMahon, S.B. Spinal cord repair strategies: why do they work? Nat. Rev. Neurosci. 7, 644–653 (2006).

    Article  CAS  Google Scholar 

  32. Brock, J.H. et al. Local and remote growth factor effects after primate spinal cord injury. J. Neurosci. 30, 9728–9737 (2010).

    Article  CAS  Google Scholar 

  33. Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    Article  CAS  Google Scholar 

  34. Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).

    Article  Google Scholar 

  35. Cattell, R.B. The Scree test for the number of factors. Multivariate Behav. Res. 1, 245–276 (1966).

    Article  CAS  Google Scholar 

  36. Hogarty, K.Y., Hines, C.V., Kromrey, J.D., Ferron, J.M. & Mumford, K.R. The quality of factor solutions in exploratory factor analysis: the influence of sample size, communality and overdetermination. Educ. Psychol. Meas. 65, 202–226 (2005).

    Article  Google Scholar 

  37. Guadagnoli, E. & Velicer, W.F. Relation of sample size to the stability of component patterns. Psychol. Bull. 103, 265–275 (1988).

    Article  Google Scholar 

  38. MacCallum, R.C., Widaman, K.F., Zhang, S. & Hong, S. Sample size in factor analysis. Psychol. Methods 4, 84–99 (1999).

    Article  Google Scholar 

  39. Cattell, R.B., Balcar, K.R., Horn, J.L. & Nesselroade, J.R. Factor pattern matching procedures: an improvement of the S index; with tables. Educ. Psychol. Meas. 29, 781–792 (1969).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Yang, S. Zdunowski, M. Culbertson, H. Zhong, R. Moseanko, S. Hawbecker, H. McKay and T. Bernot for valuable experimental assistance. This work was supported by the US National Institutes of Health (NS42291, NS049881 and NS053059), the Veterans Administration, California Roman-Reed funds, the Bernard and Anne Spitzer Charitable Trust and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.S.R., G.C., M.S.B., L.A.H., J.C.B., V.R.E. and M.H.T. designed the study. S.C.S. tested experimental subjects. S.C.S., Y.S.N., G.C., D.L.J. and J.C.B. performed behavioral tests. M.H.T., E.S.R., R.R.R. and Y.S.N. performed surgeries. G.C., E.S.R., D.L.J. and A.R.F. analyzed behavioral, electrophysiological and kinematic data. E.S.R., J.H.B., D.M.M., L.A.H. and M.H.T. analyzed anatomical data. M.H.T., E.S.R. and G.C. wrote the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mark H Tuszynski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1 and 2 (PDF 3130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenzweig, E., Courtine, G., Jindrich, D. et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13, 1505–1510 (2010). https://doi.org/10.1038/nn.2691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing