Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation

Abstract

Exquisitely precise synapse formation is crucial for the mammalian CNS to function correctly. Retinal photoreceptors transfer information to bipolar and horizontal cells at a specialized synapse, the ribbon synapse. We identified pikachurin, an extracellular matrix–like retinal protein, and observed that it localized to the synaptic cleft in the photoreceptor ribbon synapse. Pikachurin null-mutant mice showed improper apposition of the bipolar cell dendritic tips to the photoreceptor ribbon synapses, resulting in alterations in synaptic signal transmission and visual function. Pikachurin colocalized with both dystrophin and dystroglycan at the ribbon synapses. Furthermore, we observed direct biochemical interactions between pikachurin and dystroglycan. Together, our results identify pikachurin as a dystroglycan-interacting protein and demonstrate that it has an essential role in the precise interactions between the photoreceptor ribbon synapse and the bipolar dendrites. This may also advance our understanding of the molecular mechanisms underlying the retinal electrophysiological abnormalities observed in muscular dystrophy patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular analysis and expression of Pikachurin.
Figure 2: Pikachurin localizes to the synaptic cleft of photoreceptor ribbon synapse in the OPL.
Figure 3: Generation of Pikachurin null mouse by targeted gene disruption.
Figure 4: Pikachurin is required for proper apposition of bipolar dendritic tips to the photoreceptor synaptic terminus.
Figure 5: Electrophysiological and OKR analyses of wild-type and Pikachurin null mice.
Figure 6: Interaction and colocalization of pikachurin with dystroglycan.

Similar content being viewed by others

References

  1. Waites, C.L., Craig, A.M. & Garner, C.C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  Google Scholar 

  3. tom Dieck, S. & Brandstatter, J.H. Ribbon synapses of the retina. Cell Tissue Res. 326, 339–346 (2006).

    Article  PubMed  Google Scholar 

  4. Sterling, P. & Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 28, 20–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Straub, V. & Campbell, K.P. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr. Opin. Neurol. 10, 168–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Henry, M.D. & Campbell, K.P. Dystroglycan inside and out. Curr. Opin. Cell Biol. 11, 602–607 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Sugiyama, J., Bowen, D.C. & Hall, Z.W. Dystroglycan binds nerve and muscle agrin. Neuron 13, 103–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Winder, S.J. The complexities of dystroglycan. Trends Biochem. Sci. 26, 118–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Talts, J.F., Andac, Z., Gohring, W., Brancaccio, A. & Timpl, R. Binding of the G domains of laminin α1 and α2 chains and perlecan to heparin, sulfatides, α-dystroglycan and several extracellular matrix proteins. EMBO J. 18, 863–870 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sugita, S. et al. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154, 435–445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueda, H., Gohdo, T. & Ohno, S. β-dystroglycan localization in the photoreceptor and Muller cells in the rat retina revealed by immunoelectron microscopy. J. Histochem. Cytochem. 46, 185–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Jastrow, H., Koulen, P., Altrock, W.D. & Kroger, S. Identification of a β-dystroglycan–immunoreactive subcompartment in photoreceptor terminals. Invest. Ophthalmol. Vis. Sci. 47, 17–24 (2006).

    Article  PubMed  Google Scholar 

  14. Schmitz, F. & Drenckhahn, D. Localization of dystrophin and β-dystroglycan in bovine retinal photoreceptor processes extending into the postsynaptic dendritic complex. Histochem. Cell Biol. 108, 249–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Dalloz, C. et al. Differential distribution of the members of the dystrophin glycoprotein complex in mouse retina: effect of the mdx(3Cv) mutation. Mol. Cell. Neurosci. 17, 908–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Cibis, G.W., Fitzgerald, K.M., Harris, D.J., Rothberg, P.G. & Rupani, M. The effects of dystrophin gene mutations on the ERG in mice and humans. Invest. Ophthalmol. Vis. Sci. 34, 3646–3652 (1993).

    CAS  PubMed  Google Scholar 

  17. Fitzgerald, K.M., Cibis, G.W., Giambrone, S.A. & Harris, D.J. Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. J. Clin. Invest. 93, 2425–2430 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pillers, D.A. Dystrophin and the retina. Mol. Genet. Metab. 68, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Nishida, A. et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6, 1255–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Koike, C. et al. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol. Cell Biol. 27, 8318–8329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Iwasaki, M., Myers, K.M., Rayborn, M.E. & Hollyfield, J.G. Interphotoreceptor matrix in the human retina: cone-like domains surround a small population of rod photoreceptors. J. Comp. Neurol. 319, 277–284 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Dick, O. et al. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz, F., Konigstorfer, A. & Sudhof, T.C. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857–872 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Nomura, A. et al. Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77, 361–369 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Rao-Mirotznik, R., Harkins, A.B., Buchsbaum, G. & Sterling, P. Mammalian rod terminal: architecture of a binary synapse. Neuron 14, 561–569 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Robson, J.G. & Frishman, L.J. Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis. Neurosci. 12, 837–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Pillers, D.A. et al. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nat. Genet. 4, 82–86 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Sigesmund, D.A. et al. Characterization of the ocular phenotype of Duchenne and Becker muscular dystrophy. Ophthalmology 101, 856–865 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Holzfeind, P.J. et al. Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large (myd) mouse defines a natural model for glycosylation-deficient muscle-eye-brain disorders. Hum. Mol. Genet. 11, 2673–2687 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hohenester, E., Tisi, D., Talts, J.F. & Timpl, R. The crystal structure of a laminin G–like module reveals the molecular basis of α-dystroglycan binding to laminins, perlecan and agrin. Mol. Cell 4, 783–792 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Bowe, M.A., Deyst, K.A., Leszyk, J.D. & Fallon, J.R. Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: a heteromeric complex related to the dystroglycans. Neuron 12, 1173–1180 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Ervasti, J.M. & Campbell, K.P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Kanagawa, M. et al. Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function. FEBS Lett. 579, 4792–4796 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Michele, D.E. et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418, 417–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Prakash, S., Caldwell, J.C., Eberl, D.F. & Clandinin, T.R. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat. Neurosci. 8, 443–450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bozdagi, O., Valcin, M., Poskanzer, K., Tanaka, H. & Benson, D.L. Temporally distinct demands for classic cadherins in synapse formation and maturation. Mol. Cell. Neurosci. 27, 509–521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Gee, S.H., Montanaro, F., Lindenbaum, M.H. & Carbonetto, S. Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675–686 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Zaccaria, M.L., Di Tommaso, F., Brancaccio, A., Paggi, P. & Petrucci, T.C. Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience 104, 311–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Kambara, M. Murai, T. Tsujii, E. Oiki, S. Takiuchi and K. Sone for technical assistance; Y. Saijoh, M. Uehara and H. Hamada for advice on the production of a knockout mouse; and N. Maeda for statistical analysis. This work was supported by Molecular Brain Science, Grant-in-Aid for Scientific Research on Priority Areas and Grant-in-Aid for Scientific Research (B), Grand-in-Aid for Exploratory Research, Specially Designated Research Promotion, Takeda Science Foundation, Senri Life Science Foundation, The Uehara Memorial Foundation and Mochida Memorial Foundation for Medical and Pharmaceutical Research. A part of this work was supported by the Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology Japan at the Research Center for Ultrahigh-Voltage Electron Microscopy, Osaka University (Handai Multi-functional Nano-Foundry).

Author information

Authors and Affiliations

Authors

Contributions

S.S. and T. Furukawa designed the project. S.S., Y.O. and K. Katoh carried out the molecular, immunocytochemistry and electron microscopy experiments. S.S., M.K., K.M. and T.K. carried out the ERG experiments. S.S., A.T. and T. Furukawa produced the knockout mice. S.S. and N.K. performed the electron tomography analysis. J.U. carried out the immuno–electron microscopy experiments. S.S. and K.F. performed the OKR experiments. T.M. and H.S. carried out the VEP experiments. S.S., Y.O., M.K., K. Kobayashi and T.T. conducted the pull-down experiments. S.S., Y.O. and T. Furukawa wrote the manuscript. Y.T., T. Fujikado. and T. Furukawa supervised the project.

Corresponding author

Correspondence to Takashi Fujikado.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Methods (PDF 753 kb)

Supplementary Movie 1

Rod photoreceptor synapse terminal from wild-type retina displayed as serial slices from a tomogram. Graphic representation of rod photoreceptor synapse termini based on electron tomography using UHVEM. Wild-type (ac) and pikachurin−/− retina (df) are displayed as serial slices from a tomogram (a,d), serial slices with colored segmentation (b,e), and as a surface-rendered three-dimensional model (c,f). In the wild-type retinas, the synaptic ribbon of a rod photoreceptor (green) is adjacent to the horizontal cell processes (dark blue) and bipolar cell dendrites. (MPG 3177 kb)

Supplementary Movie 2

Rod photoreceptor synapse terminal from wild-type retina displayed as serial slices with colored segmentation. (MPG 6338 kb)

Supplementary Movie 3

Rod photoreceptor synapse terminal from wild-type retina displayed as a surface-rendered three-dimensional model. (MPG 6620 kb)

Supplementary Movie 4

Rod photoreceptor synapse terminal from pikachurin−/− retina displayed as serial slices from a tomogram. (MPG 6649 kb)

Supplementary Movie 5

Rod photoreceptor synapse terminal from pikachurin−/− retina displayed as serial slices with colored segmentation. (MPG 6672 kb)

Supplementary Movie 6

Rod photoreceptor synapse terminal from pikachurin−/− retina displayed as a surface-rendered three-dimensional model. (MPG 6624 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S., Omori, Y., Katoh, K. et al. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 11, 923–931 (2008). https://doi.org/10.1038/nn.2160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing