Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR

Abstract

Supercapacitors are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions. Insight into the molecular mechanisms at work inside supercapacitor carbon electrodes is obtained with 13C and 11B ex situ magic-angle spinning nuclear magnetic resonance (MAS-NMR). In activated carbons soaked with an electrolyte solution, two distinct adsorption sites are detected by NMR, both undergoing chemical exchange with the free electrolyte molecules. On charging, anions are substituted by cations in the negative carbon electrode and cations by anions in the positive electrode, and their proportions in each electrode are quantified by NMR. Moreover, acetonitrile molecules are expelled from the adsorption sites at the negative electrode alone. Two nanoporous carbon materials were tested, with different nanotexture orders (using Raman and 13C MAS-NMR spectroscopies), and the more disordered carbon shows a better capacitance and a better tolerance to high voltages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon-13 NMR spectra of soaked electrodes.
Figure 2: Boron-11 NMR spectra of soaked electrodes.
Figure 3: Chemical exchange between sites observed by NMR.
Figure 4: State of the electrolyte before and after one cycle.
Figure 5: Proportions of electrolyte species and chemical shift changes in carbon A.
Figure 6: Proportions of electrolyte species and chemical shift changes in carbon B.

Similar content being viewed by others

References

  1. Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47, 3392–3395 (2008).

    Article  CAS  Google Scholar 

  2. Huang, J., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).

    Article  CAS  Google Scholar 

  3. Kiyohara, K., Sugino, T. & Asaka, K. Electrolytes in porous electrodes: Effects of the pore size and the dielectric constant of the medium. J. Chem. Phys. 132, 144705 (2010).

    Article  Google Scholar 

  4. Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M. & Béguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 43, 1293–1302 (2005).

    Article  CAS  Google Scholar 

  5. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  6. Lastoskie, C., Gubbins, K. E. & Quirke, N. Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993).

    Article  CAS  Google Scholar 

  7. Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nature Mater. 8, 872–875 (2009).

    Article  CAS  Google Scholar 

  8. Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).

    Article  CAS  Google Scholar 

  9. Tanaka, A. et al. Effect of a quaternary ammonium salt on propylene carbonate structure in slit-shape carbon nanopores. J. Am. Chem. Soc. 132, 2112–2113 (2010).

    Article  CAS  Google Scholar 

  10. Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Mater. 11, 306–310 (2012).

    Article  CAS  Google Scholar 

  11. Lee, S. I. et al. 11B NMR study of the BF4 anion in activated carbons at various stages of charge of EDLCs in organic electrolyte. Carbon 44, 2578–2586 (2006).

    Article  CAS  Google Scholar 

  12. Azaïs, P. et al. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007).

    Article  Google Scholar 

  13. Harris, R. K., Thompson, T. V., Norman, P. R. & Pottage, C. Adsorption competition onto activated carbon, studied by magic-angle spinning NMR. J. Chem. Soc. Faraday Trans. 92, 2615–2618 (1996).

    Article  CAS  Google Scholar 

  14. Harris, R. K. et al. A magic-angle spinning NMR study into the adsorption of deuterated water by activated carbon. Carbon 34, 1275–1279 (1996).

    Article  CAS  Google Scholar 

  15. Harris, R. K., Thompson, T. V., Norman, P. R., Pottage, C. & Trethewey, A. N. High-resolution 2H solid-state NMR of 2H2O adsorbed onto activated carbon. J. Chem. Soc. Faraday Trans. 91, 1795–1799 (1995).

    Article  CAS  Google Scholar 

  16. Wagner, G. W., MacIver, B. K. & Yang, Y-C. Magic angle spinning NMR study of adsorbate reactions on activated charcoal. Langmuir 11, 1439–1442 (1995).

    Article  CAS  Google Scholar 

  17. Harris, R. K., Thompson, T. V., Norman, P. R. & Pottage, C. Phosphorus-31 NMR studies of adsorption onto activated carbon. Carbon 37, 1425–1430 (1999).

    Article  CAS  Google Scholar 

  18. Dickinson, L. M., Harris, R. K., Shaw, J. A., Chinn, M. & Norman, P. R. Oxygen-17 and deuterium NMR investigation into the adsorption of water on activated carbon. Magn. Reson. Chem. 38, 918–924 (2000).

    Article  CAS  Google Scholar 

  19. Solum, M. S., Pugmire, R. J., Jagtoyen, M. & Derbyshire, F. Evolution of carbon structure in chemically activated wood. Carbon 33, 1247–1254 (1995).

    Article  CAS  Google Scholar 

  20. Hsu, M-L. et al. A two-dimensional 13C-NMR study of powdered and oriented mesophase pitches. Carbon 34, 729–739 (1996).

    Article  CAS  Google Scholar 

  21. Deschamps, M. et al. A solid-state NMR study of C70: A model molecule for amorphous carbons. Solid State NMR 42, 81–86 (2012).

    Article  CAS  Google Scholar 

  22. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. Real-time NMR studies of electrochemical double layer capacitors. J. Am. Chem. Soc. 133, 19270–19273 (2011).

    Article  CAS  Google Scholar 

  24. Harris, P. J. F. New perspectives on the structure of graphitic carbons. Critical Rev. Solid State Mater. Sci. 30, 235–253 (2005).

    Article  CAS  Google Scholar 

  25. Acharya, M. et al. Simulations of nanoporous carbons: A chemically constrained structure. Phil. Mag. B79, 1499–1518 (1999).

    Article  Google Scholar 

  26. Petkov, V., Difrancesco, R. G., Billinge, S. J. L., Acharya, M. & Foley, H. C. Local structure of nanoporous carbons. Phil. Mag. B79, 1519–1530 (1999).

    Article  Google Scholar 

  27. Kumar, A., Lobo, R. F. & Wagner, N. J. Porous amorphous carbon models from periodic Gaussian chains of amorphous polymers. Carbon 43, 3099–3111 (2005).

    Article  CAS  Google Scholar 

  28. Bansal, R. C., Donnet, J. B. & Stoeckli, F. Active Carbon (Marcel Dekker, 1988).

    Google Scholar 

  29. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  30. Minkin, V. I., Glukhovtsev, M. N. & Simkin, B. Y. Aromaticity and Antiaromaticity (Wiley, 1994).

    Google Scholar 

  31. Lazzeretti, P. & Taddei, F. An interpretation of 1H and 13C chemical shifts in substituted benzenes on the basis of M.O. charge densities. Org. Magn. Reson. 3, 283–291 (1971).

    Article  CAS  Google Scholar 

  32. Kurzweil, P. & Chwistek, M. Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products. J. Power Sources 176, 555–567 (2008).

    Article  CAS  Google Scholar 

  33. Hantel, M. M., Kaspar, T., Nesper, R., Wokaun, A. & Kötz, R. Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance. Electrochem. Commun. 13, 90–92 (2011).

    Article  CAS  Google Scholar 

  34. Haddon, R. C. Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545–1550 (1993).

    Article  CAS  Google Scholar 

  35. Saunders, M. et al. Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 . Nature 367, 256–258 (1994).

    Article  CAS  Google Scholar 

  36. Sternfeld, T., Hoffman, R. E., Aprahamian, I. & Rabinovitz, M. Fullerene anions: Unusual charge distribution in C706−. Angew. Chem. Int. Ed. 40, 455–457 (2001).

    Article  CAS  Google Scholar 

  37. Sternfeld, T., Hoffman, R. E., Thilgen, C., Diederich, F. & Rabinovitz, M. Reduction of fulleroids C71H2: Probing the magnetic properties of C706−. J. Am. Chem. Soc. 122, 9038–9039 (2000).

    Article  CAS  Google Scholar 

  38. Schmid, M. et al. Metallic properties of Li-intercalated carbon nanotubes investigated by NMR. Phys. Rev. B 74, 073416 (2006).

    Article  Google Scholar 

  39. Ka, B. H. & Oh, S. M. Electrochemical activation of expanded graphite electrode for electrochemical capacitor. J. Electrochem. Soc. 155, A685–A692 (2008).

    Article  CAS  Google Scholar 

  40. Burket, C. L., Rajagopalan, R., Marencic, A. P., Dronvajjala, K. & Foley, H. C. Genesis of porosity in polyfurfuryl alcohol derived nanoporous carbon. Carbon 44, 2957–2963 (2006).

    Article  CAS  Google Scholar 

  41. Hucher, C., Beaume, F., Eustache, R-P. & Tekely, P. Probing phase structure and location of reverse units in poly(vinylidene fluoride) by solid-state NMR. Macromolecules 38, 1789–1796 (2005).

    Article  CAS  Google Scholar 

  42. Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V. & Griffin, R. G. Heteronuclear decoupling in rotating solids. J. Chem. Phys. 103, 6951–6958 (1995).

    Article  CAS  Google Scholar 

  43. Massiot, D. et al. Modelling one and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    Article  CAS  Google Scholar 

  44. Pauvert, O. et al. 91Zr nuclear magnetic resonance spectroscopy of solid zirconium halides at high magnetic field. Inorg. Chem. 48, 8709–8717 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors from the CEMTHI and CRMD laboratories thank CNRS for its support, and the authors from CEMHTI acknowledge support from the Réseau sur le Stockage Electrochimique de l’Energie (RS2E FR3459 CNRS) and the STORE-EX Laboratory of Excellence (LabEx) for funding. The author from ICTE acknowledges the support of the Foundation for Polish Science within the WELCOME programme (ECOLCAP project).

Author information

Authors and Affiliations

Authors

Contributions

The NMR experiments and their analysis were performed by M.D. and D.M., the Raman experiments were performed by M.R.A. and P.S., and the supercapacitors were made by E.G. during his PhD (supervisors: E.R.P. and F.B.) in collaboration with P.A.

Corresponding author

Correspondence to Michaël Deschamps.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschamps, M., Gilbert, E., Azais, P. et al. Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nature Mater 12, 351–358 (2013). https://doi.org/10.1038/nmat3567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing