Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single dopants in semiconductors

Abstract

The sensitive dependence of a semiconductor's electronic, optical and magnetic properties on dopants has provided an extensive range of tunable phenomena to explore and apply to devices. Recently it has become possible to move past the tunable properties of an ensemble of dopants to identify the effects of a solitary dopant on commercial device performance as well as locally on the fundamental properties of a semiconductor. New applications that require the discrete character of a single dopant, such as single-spin devices in the area of quantum information or single-dopant transistors, demand a further focus on the properties of a specific dopant. This article describes the huge advances in the past decade towards observing, controllably creating and manipulating single dopants, as well as their application in novel devices which allow opening the new field of solotronics (solitary dopant optoelectronics).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impurities in a MOSFET device.
Figure 2: Imaging of single impurities.
Figure 3: Modelling of impurity states.
Figure 4: Controlled incorporation of impurities.
Figure 5: Optical spectroscopy of single impurities.
Figure 6: NV centre manipulation.
Figure 7: Single impurity devices.

Similar content being viewed by others

References

  1. Pauli, W. 1930–1935 Scientific Correspondence with Bohr, Einstein, Heisenberg and Others Vol. 2, 4 (Springer, 1985).

    Google Scholar 

  2. Ralls, K. S. et al. Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lett. 52, 228–231 (1984).

    CAS  Google Scholar 

  3. Dekker, C. et al. Spontaneous resistance switching and low-frequency noise in quantum point contacts. Phys. Rev. Lett. 66, 2148–2151 (1991).

    CAS  Google Scholar 

  4. Neugroschel, A., Sah, C-T. & Carroll, M. S. Random telegraphic signals in silicon bipolar junction transistors. Appl. Phys. Lett. 66, 2879–2881 (1995).

    CAS  Google Scholar 

  5. Asenov, A., Brown, A., Davies, J., Kaya, S. & Slavcheva, G. Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETS. IEEE Trans. Electron. Dev. 50, 1837–1852 (2003).

    CAS  Google Scholar 

  6. Shinada, T., Okamoto, S., Kobayashi, T. & Ohdomari, I. Enhancing semiconductor device performance using ordered dopant arrays. Nature 437, 1128–1131 (2005).

    CAS  Google Scholar 

  7. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    CAS  Google Scholar 

  8. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon–germanium heterostructures. Phys. Rev. A 62, 012306 (2000).

    Google Scholar 

  9. Hollenberg, L. C. L. et al. Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301 (2004).

    Google Scholar 

  10. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    CAS  Google Scholar 

  11. Muller, A. et al. Time-resolved photoluminescence spectroscopy of individual Te impurity centers in ZnSe. Phys. Rev. B 73, 081306 (2006).

    Google Scholar 

  12. Ikezawa, M., Sakuma, Y. & Masumoto, Y. Single photon emission from individual nitrogen pairs in GaP. Jpn J. Appl. Phys. 46, L871–L873 (2007).

    CAS  Google Scholar 

  13. Strauf, S. et al. Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 89, 177403 (2002).

    CAS  Google Scholar 

  14. Beveratos, A. et al. Room temperature stable single-photon source. Eur. Phys. J. D 18, 191–196 (2002).

    CAS  Google Scholar 

  15. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).

    CAS  Google Scholar 

  16. Dellow, M. et al. Resonant tunneling through the bound-states of a single donor atom in a quantum-well. Phys. Rev. Lett. 68, 1754–1757 (1992).

    CAS  Google Scholar 

  17. Deshpande, M., Sleight, J., Reed, M., Wheeler, R. & Matyi, R. Spin splitting of single 0D impurity states in semiconductor heterostructure quantum wells. Phys. Rev. Lett. 76, 1328–1331 (1996).

    CAS  Google Scholar 

  18. Vdovin, E., Khanin, Y., Eaves, L., Henini, M. & Hill, G. Spin splitting of X-valley-related donor impurity states in an AlAs barrier. Phys. Rev. B 71, 195320 (2005).

    Google Scholar 

  19. Sakai, J. et al. Probing the wave-function of quantum-confined states by resonant magnetotunneling. Phys. Rev. B 48, 5664–5667 (1993).

    CAS  Google Scholar 

  20. Jouault, B. et al. Single-impurity tunneling spectroscopy to probe the discrete states of a two-dimensional electron gas in a quantizing magnetic field. Phys. Rev. B 73, 155415 (2006).

    Google Scholar 

  21. Calvet, L. E., Wernsdorfer, W., Snyder, J. P. & Reed, M. A. Transport spectroscopy of single Pt impurities in silicon using Schottky barrier MOSFETs. J. Phys. Condens. Matter 20, 374125 (2008).

    CAS  Google Scholar 

  22. Sellier, H. et al. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys. Rev. Lett. 97, 206805 (2006).

    CAS  Google Scholar 

  23. Roberts, G. et al. Voltage-controlled sharp-line electroluminescence in GaAs–AlAs double-barrier resonant-tunneling structures. Phys. Rev. B 58, R4242–R4245 (1998).

    CAS  Google Scholar 

  24. Francoeur, S., Klem, J. & Mascarenhas, A. Optical spectroscopy of single impurity centers in semiconductors. Phys. Rev. Lett. 93, 067403 (2004).

    CAS  Google Scholar 

  25. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    CAS  Google Scholar 

  26. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

    CAS  Google Scholar 

  27. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Google Scholar 

  28. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: A review. Phys. Status Solidi A 203, 3207–3225 (2006).

    CAS  Google Scholar 

  29. Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008).

    CAS  Google Scholar 

  30. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049, Jun (2008).

    CAS  Google Scholar 

  31. Neumann, P. et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009).

    Google Scholar 

  32. Myers, R. C. et al. Zero-field optical manipulation of magnetic ions in semiconductors. Nature Mater. 7, 203–208 (2008).

    CAS  Google Scholar 

  33. Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004).

    CAS  Google Scholar 

  34. Kudelski, A. et al. Optically probing the fine structure of a single Mn atom in an InAs quantum dot. Phys. Rev. Lett. 99, 247209 (2007).

    CAS  Google Scholar 

  35. Gall, C. L. et al. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasiresonant photoexcitation. Phys. Rev. Lett. 102, 127402 (2009).

    Google Scholar 

  36. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Google Scholar 

  37. Manassen, Y., Hamers, R. J., Demuth, J. E., and A. J. Castellano, J. Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 62, 2531–2534 (1989).

    CAS  Google Scholar 

  38. Durkan, C. & Welland, M. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458–460 (2002).

    CAS  Google Scholar 

  39. Sainoo, Y., Isshiki, H., Shahed, S. M. F., Takaoka, T. & Komeda, T. Atomically resolved Larmor frequency detection on Si(111)-7 × 7 oxide surface. Appl. Phys. Lett. 95, 082504 (2009).

    Google Scholar 

  40. Voyles, P., Grazul, J. & Muller, D. Imaging individual atoms inside crystals with ADF-stem. Ultramicroscopy 96, 251–273 (2003).

    CAS  Google Scholar 

  41. van Benthem, K. et al. Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005).

    Google Scholar 

  42. Kelly, T. F. & Miller, M. K. Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

    Google Scholar 

  43. Topinka, M. et al. Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000).

    CAS  Google Scholar 

  44. Woodside, M. & McEuen, P. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296, 1098–1101 (2002).

    CAS  Google Scholar 

  45. Kuljanishvili, I. et al. Scanning-probe spectroscopy of semiconductor donor molecules. Nature Phys. 4, 227–233 (2008).

    CAS  Google Scholar 

  46. Feenstra, R. M. et al. Cross-sectional imaging and spectroscopy of GaAs doping superlattices by scanning tunneling microscopy. Appl. Phys. Lett. 61, 795–797 (1992).

    CAS  Google Scholar 

  47. Zheng, Z., Salmeron, M. & Weber, E. Empty state and filled state image of ZnGa acceptor in GaAs studied by scanning-tunneling-microscopy. Appl. Phys. Lett. 64, 1836–1838 (1994).

    CAS  Google Scholar 

  48. Yakunin, A. M. et al. Spatial structure of an individual Mn acceptor in GaAs. Phys. Rev. Lett. 92, 216806 (2004).

    CAS  Google Scholar 

  49. Marczinowski, F. et al. Local electronic structure near Mn acceptors in InAs: Surface-induced symmetry breaking and coupling to host states. Phys. Rev. Lett. 99, 157202 (2007).

    CAS  Google Scholar 

  50. Khajetoorians, A. A. et al. Detecting excitation and magnetization of individual dopants in a semiconductor. Nature 467, 1084–1087 (2010).

    CAS  Google Scholar 

  51. Wijnheijmer, A. P. et al. Nanoscale potential fluctuations in (Ga, Mn)As/GaAs heterostructures: From individual ions to charge clusters and electrostatic quantum dots. Nano Lett. 10, 102739 (2010).

    Google Scholar 

  52. Wilson, A. H. The theory of electronic semiconductors. II Proc. R. Soc. A 134, 277–287 (1931).

    CAS  Google Scholar 

  53. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).

    CAS  Google Scholar 

  54. Kohn, W. Shallow impurity states in silicon and germanium. Solid State Phys. 5, 257 (1957).

    CAS  Google Scholar 

  55. Koster, G. F. & Slater, J. C. Wave functions for impurity levels. Phys. Rev. 95, 1167–1176 (1954).

    Google Scholar 

  56. Hjalmarson, H. P., Vogl, P., Wolford, D. J. & Dow, J. D. Theory of substitutional deep traps in covalent semiconductors. Phys. Rev. Lett. 44, 810–813 (1980).

    CAS  Google Scholar 

  57. Vogl, P. & Baranowski, J. M. Electronic structure of 3d-transition metal impurities in semiconductors. Acta Phys. Polon. A 67, 133–142 (1985).

    Google Scholar 

  58. Mahadevan, P. & Zunger, A. First-principles investigation of the assumptions underlying model-Hamiltonian approaches to ferromagnetism of 3d impurities in III–V semiconductors. Phys. Rev. B 69, 115211 (2004).

    Google Scholar 

  59. Tang, J-M. & Flatté, M. E. Multiband tight-binding model of local magnetism in Ga1−xMnxAs. Phys. Rev. Lett. 92, 047201 (2004).

    Google Scholar 

  60. Tang, J-M. & Flatté, M. E. Spin-orientation-dependent spatial structure of a magnetic acceptor state in a zincblende semiconductor. Phys. Rev. B 72, 161315 (2005).

    Google Scholar 

  61. Strandberg, T. O., Canali, C. M. & MacDonald, A. H. Magnetic properties of substitutional Mn in (110) GaAs surface and subsurface layers. Phys. Rev. B 80, 024425 (2009).

    Google Scholar 

  62. Yakunin, A. M. et al. Warping a single Mn acceptor wavefunction by straining the GaAs host. Nature Mater. 6, 512–515 (2007).

    CAS  Google Scholar 

  63. Tang, J-M., Levy, J. & Flatté, M. E. All-electrical control of single ion spins in a semiconductor. Phys. Rev. Lett. 97, 106803 (2006).

    Google Scholar 

  64. Lenef, A. & Rand, S. C. Electronic structure of the NV center in diamond: Theory. Phys. Rev. B 53, 13441–13455 (1996).

    CAS  Google Scholar 

  65. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Google Scholar 

  66. Maingault, L., Besombes, L., Leger, Y., Bougerol, C. & Mariette, H. Inserting one single Mn ion into a quantum dot. Appl. Phys. Lett. 89, 193109 (2006).

    Google Scholar 

  67. Andresen, S. E. S. et al. Charge state control and relaxation in an atomically doped silicon device. Nano Lett. 7, 2000–2003 (2007).

    CAS  Google Scholar 

  68. Naydenov, B. et al. Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009).

    CAS  Google Scholar 

  69. Weis, C. D. et al. Single atom doping for quantum device development in diamond and silicon. J. Vac. Sci. Technol. B 26, 2596–2600 (2008).

    CAS  Google Scholar 

  70. O'Brien, J. et al. Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 161401 (2001).

    Google Scholar 

  71. Song, Y. J. et al. Making Mn substitutional impurities in InAs using a scanning tunneling microscope. Nano Lett. 9, 4333–4337 (2009).

    CAS  Google Scholar 

  72. Kitchen, D., Richardella, A., Tang, J-M., Flatté, M. E. & Yazdani, A. Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions. Nature 442, 436–439 (2006).

    CAS  Google Scholar 

  73. Richardella, A., Kitchen, D. & Yazdani, A. Mapping the wave function of transition metal acceptor states in the GaAs surface. Phys. Rev. B 80, 045318 (2009).

    Google Scholar 

  74. Lee, D. H. & Gupta, J. A. Tunable field-control over the binding energy of single dopants by a charged vacancy in GaAs. Science 10.1126/science.1197434 (2010).

  75. Schofield, S. R. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

    CAS  Google Scholar 

  76. Wilson, H. et al. Phosphine dissociation on the Si(001) surface. Phys. Rev. Lett. 93, 226102 (2004).

    CAS  Google Scholar 

  77. Ruess, F. J. et al. Realization of atomically controlled dopant devices in silicon. Small 3, 563–567 (2007).

    CAS  Google Scholar 

  78. Teichmann, K. et al. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 101, 076103 (2008).

    CAS  Google Scholar 

  79. Wijnheijmer, A. P. et al. Enhanced donor binding energy close to a semiconductor surface. Phys. Rev. Lett. 102, 166101 (2009).

    CAS  Google Scholar 

  80. Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    Google Scholar 

  81. Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FINFET. Nature Phys. 4, 656–661 (2008).

    CAS  Google Scholar 

  82. Rahman, R. et al. Orbital stark effect and quantum confinement transition of donors in silicon. Phys. Rev. B 80, 165314 (2009).

    Google Scholar 

  83. Saraiva, A., Calderon, M., Hu, X., Sarma, S. D. & Koiller, B. Physical mechanisms of interface-mediated intervalley coupling in Si. Phys. Rev. B 80, 081305 (2009).

    Google Scholar 

  84. De, A., Pryor, C. E. & Flatté, M. E. Electric-field control of a hydrogenic donor's spin in a semiconductor. Phys. Rev. Lett. 102 (2009).

  85. Bradbury, F. R. et al. Stark tuning of donor electron spins in silicon. Phys. Rev. Lett. 97, 176404 (2006).

    CAS  Google Scholar 

  86. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006).

    CAS  Google Scholar 

  87. Leger, Y., Besombes, L., Fernandez-Rossier, J., Maingault, L. & Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 97, 107401 (2006).

    CAS  Google Scholar 

  88. Manson, N. & Harrison, J. Photo-ionization of the nitrogen-vacancy center in diamond. Diam. Relat. Mater. 14, 1705–1710 (2005).

    CAS  Google Scholar 

  89. Krebs, O., Benjamin, E. & Lemaitre, A. Magnetic anisotropy of singly Mn-doped InAs/GaAs quantum dots. Phys. Rev. B 80, 165315 (2009).

    Google Scholar 

  90. Takahashi, S., Hanson, R., van Tol, J., Sherwin, M. S. & Awschalom, D. D. Quenching spin decoherence in diamond through spin bath polarization. Phys. Rev. Lett. 101, 047601 (2008).

    Google Scholar 

  91. Averkiev, N., Gutkin, A., Kolchanova, N. & Reshchikov, M. Influence of uniaxial deformation on the Mn impurity photoluminescence band of GaAs. Sov. Phys. Semicond. 18, 1019–1021 (1984).

    Google Scholar 

  92. Celebi, C. C. et al. Surface induced asymmetry of acceptor wave functions. Phys. Rev. Lett. 104, 086404 (2010).

    CAS  Google Scholar 

  93. Jancu, J-M. et al. STM images of subsurface Mn atoms in GaAs: Evidence of hybridization of surface and impurity states. Phys. Rev. Lett. 101, 196801 (2008).

    Google Scholar 

  94. Bastard, G. Hydrogenic impurity states in a quantum well — a simple model. Phys. Rev. B 24, 4714–4722 (1981).

    CAS  Google Scholar 

  95. Plot, B., Deveaud, B., Lambert, B., Chomette, A. & Regreny, A. Manganese luminescence in GaAs/GaAlAs superlattices. J. Phys. C 19, 4279–4289 (1986).

    CAS  Google Scholar 

  96. Pereira, R. N. et al. Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Phys. Rev. B 79, 161304 (2009).

    Google Scholar 

  97. Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. Nature Nanotech. 5, 133–137 (2010).

    CAS  Google Scholar 

  98. Yakunin, A. M. et al. Spatial structure of Mn–Mn acceptor pairs in GaAs. Phys. Rev. Lett. 95, 256402 (2005).

    CAS  Google Scholar 

  99. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    CAS  Google Scholar 

  100. Epstein, R., Mendoza, F., Kato, Y. & Awschalom, D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    CAS  Google Scholar 

  101. Hanson, R., Dobrovitski, V., Feigun, A., Gywat, O. & Awschalom, D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    CAS  Google Scholar 

  102. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009).

    Google Scholar 

  103. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    CAS  Google Scholar 

  104. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    CAS  Google Scholar 

  105. Hanson, R., Gywat, O. & Awschalom, D. D. Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203(R) (2006).

    Google Scholar 

  106. Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816, (2008).

    CAS  Google Scholar 

  107. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Google Scholar 

  108. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Google Scholar 

  109. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Google Scholar 

  110. Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechnology 20, 495401 (2009).

    Google Scholar 

  111. Tan, K. Y. et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10, 11–15 (2010).

    CAS  Google Scholar 

  112. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    CAS  Google Scholar 

  113. Skolnick, M. & Mowbray, D. Self-assembled semiconductor quantum dots: Fundamental physics and device applications. Annu. Rev. Mater. Res. 34, 181–218 (2007).

    Google Scholar 

  114. Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

    CAS  Google Scholar 

  115. Heiss, D., Jovanov, V., Bichler, M., Abstreiter, G. & Finley, J. J. Charge and spin readout scheme for single self-assembled quantum dots. Phys. Rev. B 77, 235442 (2008).

    Google Scholar 

  116. Laucht, A. et al. Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11, 023034 (2009).

    Google Scholar 

  117. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003).

    Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with all participants at the workshop on Single Dopant Control, 29 March to 1 April 2010, at the Lorentz Center in Leiden. We also thank D. Awschalom, L. Besombes and S. Rogge for their suggestions and reading of the manuscript prior to submission. P.M.K. acknowledges support from VICI-Grant No. 6631, FOM, NAMASTE, SemiSpinNet and the Lorentz Center. M.E.F. acknowledges support from ARO, ONR and DARPA

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul M. Koenraad or Michael E. Flatté.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenraad, P., Flatté, M. Single dopants in semiconductors. Nature Mater 10, 91–100 (2011). https://doi.org/10.1038/nmat2940

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing