Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A map for phase-change materials

Abstract

Phase-change materials are characterized by a unique property portfolio well suited for data storage applications. Here, a first treasure map for phase-change materials is presented on the basis of a fundamental understanding of the bonding characteristics. This map is spanned by two coordinates that can be calculated just from the composition, and represent the degree of ionicity and the tendency towards hybridization (‘covalency’) of the bonding. A small magnitude of both quantities is an inherent characteristic of phase-change materials. This coordinate scheme enables a prediction of trends for the physical properties on changing stoichiometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical phase-change materials.
Figure 2: Map for numerous Np=3 systems.
Figure 3: Results of FTIR reflectance measurements on SiSb2Te4.
Figure 4: Schematic model potentials in the case of local distortions.

Similar content being viewed by others

References

  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  2. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  3. Lacaita, A. L. & Wouters, D. in Nanotechnology Vol. 3 (ed. Waser, R.) (Wiley–VCH, 2008).

    Google Scholar 

  4. Matsunaga, T. & Yamada, N. A study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiation. Jpn. J. Appl. Phys. 1 41, 1674–1678 (2002).

    Article  CAS  Google Scholar 

  5. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  6. Kalb, J., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007).

    Article  CAS  Google Scholar 

  7. Yamada, N. in Phase Change Materials: Science and Applications (eds Raoux, S. & Wuttig, M.) (Springer, 2008, in the press).

  8. Yamada, N. Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996).

    Article  CAS  Google Scholar 

  9. Yamada, N. et al. Phase-change materials for use in rewriteable dual-layer optical disk. Proc. SPIE 4342, 55–63 (2002).

    Article  CAS  Google Scholar 

  10. Welnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007).

    Article  Google Scholar 

  11. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008).

    Article  CAS  Google Scholar 

  12. Lucovsky, G. & White, R. M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    Article  CAS  Google Scholar 

  13. Luo, M. B. & Wuttig, M. The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004).

    Article  CAS  Google Scholar 

  14. Detemple, R., Wamwangi, D., Wuttig, M. & Bihlmayer, G. Identification of Te alloys with suitable phase change characteristics. Appl. Phys. Lett. 83, 2572–2574 (2003).

    Article  CAS  Google Scholar 

  15. Nonakaa, T., Ohbayashia, G., Toriumib, Y., Morib, Y. & Hashimoto, H. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films 370, 258–261 (2000).

    Article  Google Scholar 

  16. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000).

    Article  CAS  Google Scholar 

  17. Robertson, J. Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films 515, 7538–7541 (2007).

    Article  CAS  Google Scholar 

  18. van Pieterson, L., van Schijndel, M., Rijpers, J. C. N. & Kaiser, M. Te-free, Sb-based phase-change materials for high-speed rewritable optical recording. Appl. Phys. Lett. 83, 1373–1375 (2003).

    Article  CAS  Google Scholar 

  19. Littlewood, P. B. The crystal-structure of IV–VI compounds 1: Classification and description. J. Phys. C: Solid State Phys. 13, 4855–4873 (1980).

    Article  CAS  Google Scholar 

  20. Littlewood, P. B. The crystal-structure of IV–VI compounds 2: A microscopic model for cubic-rhombohedral materials. J. Phys. C: Solid State Phys. 13, 4875–4892 (1980).

    Article  CAS  Google Scholar 

  21. Simons, G. & Bloch, A. N. Pauli-force model potential for solids. Phys. Rev. B 7, 2754–2761 (1973).

    Article  Google Scholar 

  22. St. John, J. & Bloch, A. N. Quantum-defect electronegativity scale for nontransition elements. Phys. Rev. Lett. 33, 1095–1098 (1974).

    Article  CAS  Google Scholar 

  23. Mott, N. F. Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967).

    Article  CAS  Google Scholar 

  24. Phillips, J. C. Structural pseudion form factors. Solid State Commun. 22, 549–550 (1977).

    Article  CAS  Google Scholar 

  25. Chelikowsky, J. R. & Phillips, J. C. Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal-alloys and compounds. Phys. Rev. B 17, 2453–2477 (1978).

    Article  CAS  Google Scholar 

  26. Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change materials. Nature Mater. 7, 399–405 (2008).

    Article  Google Scholar 

  27. Littlewood, P. B. The dielectric constant of cubic IV–VI. J. Phys. C: Solid State Phys. 12, 4459–4468 (1979).

    Article  CAS  Google Scholar 

  28. Littlewood, P. B. & Heine, V. The infrared effective charge in IV–VI compounds: I. A simple one-dimensional model. J. Phys. C: Solid State Phys. 12, 4431–4439 (1979).

    Article  CAS  Google Scholar 

  29. Littlewood, P. B. The infrared effective charge in IV–VI compounds: II. A three dimensional calculation. J. Phys. C: Solid State Phys. 12, 4441–4457 (1979).

    Article  CAS  Google Scholar 

  30. Lee, C. M., Yen, W. S., Liu, R. H. & Chin, T. S. Performance of Ge–Sb–Bi–Te–B recording media for phase-change optical disks. Jpn. J. Appl. Phys. 40, 5321–5325 (2001).

    Article  CAS  Google Scholar 

  31. Lee, T. et al. Thin film alloy mixtures for high speed phase change optical storage: A study on (GeSb2Te4){1−x}(SnBi2Te4){x} . Appl. Phys. Lett. 80, 3313–3315 (2002).

    Article  CAS  Google Scholar 

  32. Matsunaga, T. & Yamada, N. Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004).

    Article  CAS  Google Scholar 

  33. Wang, K., Wamwangi, D., Ziegler, S., Steimer, C. & Wuttig, M. Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5 . J. Appl. Phys. 96, 5557–5562 (2004).

    Article  CAS  Google Scholar 

  34. Kojima, R. & Yamada, N. Acceleration of crystallization speed by Sn addition to Ge–Sb–Te phase-change recording material. Jpn. J. Appl. Phys. 40, 5930–5937 (2001).

    Article  CAS  Google Scholar 

  35. Zhang, T. et al. High speed chalcogenide random access memory based on Si2Sb2Te5 . Jpn. J. Appl. Phys. 46, 247–249 (2007).

    Article  Google Scholar 

  36. Matsunaga, T. & Yamada, N. Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004).

    Article  Google Scholar 

  37. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–128 (2007).

    Article  CAS  Google Scholar 

  38. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, 1956).

    Google Scholar 

  39. Gaspard, J. P. & Ceolin, R. Hume–Rothery rule in V–VI compounds. Solid State Commun. 84, 839–842 (1992).

    Article  CAS  Google Scholar 

  40. Edwards, A. H. et al. Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 73, 045210 (2006).

    Article  Google Scholar 

  41. Waghmare, U. V., Spaldin, N. A., Kandpal, H. C. & Seshadri, R. First-principles indicators of metallicity and cation off-centricity in the IV–VI rocksalt chalcogenides of divalent Ge, Sn, and Pb. Phys. Rev. B 67, 125111 (2003).

    Article  Google Scholar 

  42. Rabe, K. M. & Joannopoulos, J. D. Ab initio determination of a structural phase transition temperature. Phys. Rev. Lett. 59, 570–573 (1987).

    Article  CAS  Google Scholar 

  43. Rabe, K. M. & Joannopoulos, J. D. Theory of the structural phase transition of GeTe. Phys. Rev. B 36, 6631–6639 (1987).

    Article  CAS  Google Scholar 

  44. Matsunaga, T. & Yamada, N. Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004).

    Article  CAS  Google Scholar 

  45. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991).

    Article  CAS  Google Scholar 

  46. Gonze, X. et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).

    Article  Google Scholar 

  47. Gonze, X. et al. A brief introduction to the ABINIT software package. Z. Kristallogr. 220, 558–562 (2005).

    CAS  Google Scholar 

  48. Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).

    Article  CAS  Google Scholar 

  49. Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

    Article  CAS  Google Scholar 

  50. Welnic, W. Electronic and Optical Properties of Phase Change Alloys Studied with Ab Initio Methods. PhD thesis, RWTH Aachen (2006).

Download references

Acknowledgements

We gratefully acknowledge fruitful discussions with W. Bensch, R. Dronskowski and J. Robertson, the careful preparation of phase-change targets by Umicore (Liechtenstein) within the EU project CAMELS, the preparation and characterization of Si1Sb2Te4 films by M. Klein and S. Kremers and financial support by the Deutsche Forschungsgemeinschaft (Wu 243/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wuttig.

Supplementary information

Supplementary Information

Supplementary Information (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lencer, D., Salinga, M., Grabowski, B. et al. A map for phase-change materials. Nature Mater 7, 972–977 (2008). https://doi.org/10.1038/nmat2330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing