Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How superheated crystals melt

Abstract

In experiments1,2,3 where intense radiation penetrates into the bulk of a solid and causes ultrafast (femtosecond) heating, the superheated crystalline solid melts from within at a temperature above the equilibrium melting temperature. But what happens on the atomic scale as a solid loses crystalline order remains an open question. Molecular dynamics modelling allows the position of every atom to be traced at each instant, as a crystal transforms from solid to liquid. Here we use such detailed atomistic simulations, relevant for aluminium, to show that the thermal fluctuation initiating melting is an aggregate typically with 6–7 interstitials and 3–4 vacancies. This mechanism differs from those that have traditionally been proposed, which generally involve many more atoms at the initial melting stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Order parameter and elastic constants.
Figure 2: Pair correlation functions.
Figure 3: Number of point defects before melting.
Figure 4: Spatial distribution of point defects.

Similar content being viewed by others

References

  1. Siwick, B. J., Dwyer, J. R., Jordan, R. E. & Dwayne Miller, R. J. An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003).

    Article  CAS  Google Scholar 

  2. Luo, S. -N. & Ahrens, T. J. Superheating systematics of crystalline solids. Appl. Phys. Lett. 82, 1836–1838 (2003).

    Article  CAS  Google Scholar 

  3. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    Article  CAS  Google Scholar 

  4. Poirier, J. -P. Introduction to the Physics of the Earth's Interior (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  5. Boyer, L. L. Theory of melting based on lattice instability. Phase Transit. (UK) 5, 1–48 (1985).

    Article  CAS  Google Scholar 

  6. Cahn, R. W. Melting from within. Nature 413, 582–583 (2001).

    Article  CAS  Google Scholar 

  7. Brillouin, L. On thermal dependence of elasticity in solids. Phys. Rev. 54, 916–917 (1938).

    Article  Google Scholar 

  8. Born, M. Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591–603 (1939).

    Article  CAS  Google Scholar 

  9. Mizushima, S. Dislocation models of liquid structure. J. Phys. Soc. Jpn 15, 70–77 (1960).

    Article  CAS  Google Scholar 

  10. Kuhlmann-Wilsdorf, D. Theory of melting. Phys. Rev. A 140, 1599–1610 (1965).

    Article  CAS  Google Scholar 

  11. Lindemann, F. A. Über die Berechnung molekylarer Eigenfrequenzen. Z. Phys. 11, 609–612 (1910).

    CAS  Google Scholar 

  12. Gilvarry, J. J. The Lindemann and Grüneisen laws. Phys. Rev. 102, 308–316 (1956).

    Article  CAS  Google Scholar 

  13. Jin, Z. H. & Lu, K. Melting as a homogeneously nucleated process within crystals undergoing superheating. Z. Metallkd. 91, 275–279 (2000).

    CAS  Google Scholar 

  14. Jin, Z. H., Gumbsch, P., Lu, K. & Ma, E. Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703–1–4 (2001).

    Article  Google Scholar 

  15. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1987).

    Google Scholar 

  16. Forsblom, M., Sandberg, N. & Grimvall, G. Anharmonic effects in the heat capacity of Al. Phys. Rev. B 69, 165106 (2004).

    Article  Google Scholar 

  17. Ercolessi, F. & Adams, J. B. Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  CAS  Google Scholar 

  18. Morris, J. R. & Song, X. The melting lines of model systems calculated from coexistence simulations. J. Chem. Phys. 116, 9352–9358 (2002).

    Article  CAS  Google Scholar 

  19. Parrinello, M. & Rahman, A. Strain fluctuations and elastic constants. J. Chem. Phys. 76, 2662–2666 (1982).

    Article  CAS  Google Scholar 

  20. Nordlund, K. & Averback, R. S. Role of self-interstitial atoms on the high temperature properties of metals. Phys. Rev. Lett. 80, 4201–4204 (1998).

    Article  CAS  Google Scholar 

  21. Kogure, Y., Kosugi, T. & Doyama, M. Simulation for mechanical relaxation and interaction of point defects. Mater. Sci. Eng. A 370, 100–104 (2004).

    Article  Google Scholar 

  22. Granato, A. V. Interstitialcy model for condensed matter states of face-centered-cubic metals. Phys. Rev. Lett. 68, 974–977 (1992).

    Article  CAS  Google Scholar 

  23. Kanigel, A., Adler, J. & Polturak, E. Influence of point defects on the shear elastic coefficients and on the melting temperature of copper. Int. J. Mod. Phys. C 12, 727–737 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Sandberg for useful discussions. This work has received funding from the Swedish research foundation SSF under the project ATOMICS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Grimvall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsblom, M., Grimvall, G. How superheated crystals melt. Nature Mater 4, 388–390 (2005). https://doi.org/10.1038/nmat1375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1375

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing