Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice

Abstract

The Lyme disease vaccine is based on the outer-surface lipoprotein (OspA) of the pathogen Borrelia burgdorferi, and 95% of vaccine recipients develop substantial titers of antibodies against OspA. Here, we identified seven individuals with very low antibody titers after vaccination (low responders). The macrophages of low responders produced less tumor necrosis factor-α and interleukin-6 after OspA stimulation and had lower cell-surface expression of Toll-like receptor (TLR) 1 as compared to normal cells, but normal expression of TLR2. TLRs activate innate responses to pathogens, and TLR2 recognizes lipoproteins and peptidoglycan (PGN). After OspA immunization, mice genetically deficient in either TLR2 (TLR2−/−) or TLR1 (TLR1−/−) produced low titers of antibodies against OspA. Notably, macrophages from TLR2−/− mice were unresponsive to OspA and PGN, whereas those from TLR1−/− mice responded normally to PGN but not to OspA. These data indicate that TLR1 and TLR2 are required for lipoprotein recognition and that defects in the TLR1/2 signaling pathway may account for human hyporesponsiveness to OspA vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of individuals with low titers of antibodies against OspA after immunization with OspA lipoprotein.
Figure 2: TLR2 surface protein expression in low and normal responders.
Figure 3: Responses of wild-type (WT) and TLR2−/− mice to OspA immunization and B. burgdorferi infection.
Figure 4: Cooperation of TLR1 and TLR2 in OspA recognition.
Figure 5: Generation of TLR1−/− mice.
Figure 6: TLR1 is critical to the recognition of OspA.

Similar content being viewed by others

References

  1. Steere, A.C. Lyme disease. N. Engl. J. Med. 345, 115–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro, E.D. & Gerber, M.A. Lyme disease. Clin. Infect. Dis. 31, 533–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Barthold, S.W. Animal models for Lyme disease. Lab. Invest. 72, 127–130 (1995).

    CAS  PubMed  Google Scholar 

  4. Seiler, K.P. & Weis, J.J. Immunity to Lyme disease: protection, pathology and persistence. Curr. Opin. Immunol. 8, 503–509 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong, A.L., Barthold, S.W., Persing, D.H. & Beck, D.S. Carditis in Lyme disease susceptible and resistant strains of laboratory mice infected with Borrelia burgdorferi. Am. J. Trop. Med. Hyg. 47, 249–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Barthold, S.W., de Souza, M.S., Janotka, J.L., Smith, A.L. & Persing, D.H. Chronic Lyme borreliosis in the laboratory mouse. Am. J. Pathol. 143, 959–971 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barthold, S.W., Persing, D.H., Armstrong, A.L. & Peeples, R.A. Kinetics of Borrelia burgdorferi dissemination and evolution of disease after intradermal inoculation of mice. Am. J. Pathol. 139, 263–273 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fikrig, E., Barthold, S.W., Kantor, F.S. & Flavell, R.A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 250, 553–556 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Schaible, U.E. et al. Monoclonal antibodies specific for the outer surface protein A (OspA) of Borrelia burgdorferi prevent Lyme borreliosis in severe combined immunodeficiency (scid) mice. Proc. Natl. Acad. Sci. USA 87, 3768–3772 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Telford, S.R. 3rd et al. Efficacy of human Lyme disease vaccine formulations in a mouse model. J. Infect. Dis. 171, 1368–1370 (1995).

    Article  PubMed  Google Scholar 

  11. Steere, A.C. et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. N. Engl. J. Med. 339, 209–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Thanassi, W.T. & Schoen, R.T. The Lyme disease vaccine: conception, development, and implementation. Ann. Intern. Med. 132, 661–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. de Silva, A.M. et al. Influence of outer surface protein A antibody on Borrelia burgdorferi within feeding ticks. Infect. Immun. 67, 30–35 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Medzhitov, R. & Janeway, C. Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Takeda, K. & Akira, S. Roles of Toll-like receptors in innate immune responses. Genes Cells 6, 733–742 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  17. Imler, J.L. & Hoffmann, J.A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  19. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)–deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  22. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Underhill, D.M., Ozinsky, A., Smith, K.D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96, 14459–14463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hirschfeld, M. et al. Cutting edge:inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 163, 2382–2386 (1999).

    CAS  PubMed  Google Scholar 

  28. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Weis, J.J., Ma, Y. & Erdile, L.F. Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: dependence on lipid modification. Infect. Immun. 62, 4632–4636 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Erdile, L.F. & Guy, B. OspA lipoprotein of Borrelia burgdorferi is a mucosal immunogen and adjuvant. Vaccine 15, 988–996 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Fearon, D.T. & Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  33. Erdile, L.F. et al. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect. Immun. 61, 81–90 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma, Y. et al. Outer surface lipoproteins of Borrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway. Infect. Immun. 62, 3663–3671 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hajjar, A.M. et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirschning, C.J., Wesche, H., Merrill Ayres, T. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 2091–2097 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Modlin, R.L. Activation of toll-like receptors by microbial lipoproteins: role in host defense. J. Allergy Clin. Immunol. 108, 104S–106S (2001).

    Article  Google Scholar 

  39. Fikrig, E. et al. Sera from patients with chronic Lyme disease protect mice from Lyme borreliosis. J. Infect. Dis. 169, 568–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Wooten, R.M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Thomas, V., Anguita, J., Barthold, S.W. & Fikrig, E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect. Immun. 69, 3359–3371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pasparakis, M. & Kollias, G. in Cytokines: A Practical Approach (ed. Balkwill, F.R.) 297–328 (IRL Press, Oxford, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank T. Deshefy-Longhi, S. Samanta and D. Beck for assistance, and F. Manzo for assistance with manuscript preparation. This work was supported by grants from the US National Institutes of Health, and an Arthritis Foundation Biomedical Science Grant (RAF). L.A. received a Human Frontier Science Program postdoctoral long-term fellowship, E.F. received a Clinical-Scientist Award in Translational Research from the Burroughs Wellcome Fund, R.M. is supported by a Searl Scholarship, and R.M. is an Assistant Investigator and R.A.F. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erol Fikrig or Richard A. Flavell.

Ethics declarations

Competing interests

E.F. and R.F. receive royalties from Yale University for a license agreement between Yale and SmithKline Beecham (GlaxoSmithKline) for an OspA-based vaccine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexopoulou, L., Thomas, V., Schnare, M. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8, 878–884 (2002). https://doi.org/10.1038/nm732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing