Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment

Abstract

Cell-intrinsic checkpoints limit the proliferative capacity of primary cells in response to telomere dysfunction. It is not known, however, whether telomere dysfunction contributes to cell-extrinsic alterations that impair stem cell function and organ homeostasis. Here we show that telomere dysfunction provokes defects of the hematopoietic environment that impair B lymphopoiesis but increase myeloid proliferation in aging telomerase knockout (Terc−/−) mice. Moreover, the dysfunctional environment limited the engraftment of transplanted wild-type hematopoietic stem cells (HSCs). Dysfunction of the hematopoietic environment was age dependent and correlated with progressive telomere shortening in bone marrow stromal cells. Telomere dysfunction impaired mesenchymal progenitor cell function, reduced the capacity of bone marrow stromal cells to maintain functional HSCs, and increased the expression of various cytokines, including granulocyte colony-stimulating factor (G-CSF), in the plasma of aging mice. Administration of G-CSF to wild-type mice mimicked some of the defects seen in aging Terc−/− mice, including impairment of B lymphopoiesis and HSC engraftment. Conversely, inhibition of G-CSF improved HSC engraftment in aged Terc−/− mice. Taken together, these results show that telomere dysfunction induces alterations of the environment that can have implications for organismal aging and cell transplantation therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired B-cell development and increased myeloid proliferation of wild-type donor-derived bone marrow cells in telomere-dysfunctional mice.
Figure 2: The bone marrow environment affects hematopoiesis and HSC engraftment.
Figure 3: Telomere dysfunction impairs the function of bone marrow stromal cells in aged Terc−/− mice.
Figure 4: G-CSF impairs HSC function and engraftment in aged Terc−/− mice.

Similar content being viewed by others

References

  1. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on early B- and T-cell development. Immunol. Rev. 205, 7–17 (2005).

    Article  CAS  Google Scholar 

  2. Van Zant, G. & Liang, Y. The role of stem cells in aging. Exp. Hematol. 31, 659–672 (2003).

    Article  CAS  Google Scholar 

  3. Nishimura, E.K., Granter, S.R. & Fisher, D.E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720–724 (2005).

    Article  CAS  Google Scholar 

  4. Rando, T.A. Stem cells, aging and the quest for immortality. Nature 441, 1080–1086 (2006).

    Article  CAS  Google Scholar 

  5. Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  Google Scholar 

  6. Lieber, M.R. & Karanjawala, Z.E. Aging, repetitive genomes and DNA damage. Nat. Rev. Mol. Cell Biol. 5, 69–75 (2004).

    Article  CAS  Google Scholar 

  7. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  Google Scholar 

  8. Vaziri, H. & Benchimol, S. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp. Gerontol. 31, 295–301 (1996).

    Article  CAS  Google Scholar 

  9. Djojosubroto, M.W., Choi, Y.S., Lee, H.W. & Rudolph, K.L. Telomeres and telomerase in aging, regeneration and cancer. Mol. Cells 15, 164–175 (2003).

    CAS  PubMed  Google Scholar 

  10. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36, 447–449 (2004).

    Article  CAS  Google Scholar 

  11. Rudolph, K.L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  Google Scholar 

  12. Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999).

    Article  CAS  Google Scholar 

  13. Allsopp, R.C., Morin, G.B., DePinho, R.A., Harley, C.B. & Weissman, I.L. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102, 517–520 (2003).

    Article  CAS  Google Scholar 

  14. Choudhury, A.R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 39, 99–105 (2007).

    Article  CAS  Google Scholar 

  15. Hemann, M.T., Strong, M.A., Hao, L.Y. & Greider, C.W. The shortest telomere, not average telomere length, is critical for cell viability and chromosomal stability. Cell 107, 67–77 (2001).

    Article  CAS  Google Scholar 

  16. Hardy, R.R. & Shinton, S.A. Characterization of B lymphopoiesis in mouse bone marrow and spleen. Methods Mol. Biol. 271, 1–24 (2004).

    CAS  PubMed  Google Scholar 

  17. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    Article  CAS  Google Scholar 

  18. Adams, G.B. & Scadden, D.T. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337 (2006).

    Article  CAS  Google Scholar 

  19. Drize, N., Gan, O. & Zander, A. Effect of recombinant human granulocyte colony-stimulating factor treatment of mice on spleen colony-forming unit number and self-renewal capacity. Exp. Hematol. 21, 1289–1293 (1993).

    CAS  PubMed  Google Scholar 

  20. Neben, S., Marcus, K. & Mauch, P. Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 81, 1960–1967 (1993).

    CAS  PubMed  Google Scholar 

  21. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J. Immunol. 176, 1007–1012 (2006).

    Article  CAS  Google Scholar 

  22. Saba, H.I. Myelodysplastic syndromes in the elderly. Cancer Control 8, 79–102 (2001).

    Article  CAS  Google Scholar 

  23. Hornsby, P.J. Telomerization of mammalian cells and transplantation of telomerized cells in immunodeficient mice. Methods Mol. Biol. 240, 147–166 (2004).

    CAS  PubMed  Google Scholar 

  24. Shay, J.W. & Wright, W.E. The use of telomerized cells for tissue engineering. Nat. Biotechnol. 18, 22–23 (2000).

    Article  CAS  Google Scholar 

  25. Shelton, D.N., Chang, E., Whittier, P.S., Choi, D. & Funk, W.D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945 (1999).

    Article  CAS  Google Scholar 

  26. Caruso, C., Lio, D., Cavallone, L. & Franceschi, C. Aging, longevity, inflammation, and cancer. Ann. NY Acad. Sci. 1028, 1–13 (2004).

    Article  CAS  Google Scholar 

  27. Davis, T. & Kipling, D. Werner syndrome as an example of inflamm-aging: possible therapeutic opportunities for a progeroid syndrome? Rejuvenation Res. 9, 402–407 (2006).

    Article  CAS  Google Scholar 

  28. Zatz, M.M. & Goldstein, A.L. Thymosins, lymphokines, and the immunology of aging. Gerontology 31, 263–277 (1985).

    Article  CAS  Google Scholar 

  29. Parrinello, S., Coppe, J.P., Krtolica, A. & Campisi, J. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 118, 485–496 (2005).

    Article  CAS  Google Scholar 

  30. Rudolph, K.L., Millard, M., Bosenberg, M.W. & DePinho, R.A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ballmaier for helping with the sorting, and H. Ema and Z. Li for advice and discussion. This work was supported by the Deutsche Forschungsgemeinschaft (Heisenberg Professorship to K.L.R.: Ru 745/8-1, Ru 745 4-1 and KFO119), the Deutsche Krebshilfe e.V. (10-2236-Ru 2), the Roggenbuck-Stiftung, the Wilhelm-Sander-Stiftung and the Fritz-Thyssen Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

Z.J. conducted most of the experiments; H.J., M.J., A.G. and A.T. contributed to the in vitro studies; C.R. and C.K. contributed to the B-cell analysis; Z.J. and K.L.R. designed the study and wrote the manuscript; K.L.R. supervised the project.

Corresponding author

Correspondence to K Lenhard Rudolph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Environmental defects in Terc−/− mice impair B-lymphopoiesis. (PDF 104 kb)

Supplementary Fig. 2

Environmental defects in Terc−/− mice accelerate myelopoiesis. (PDF 76 kb)

Supplementary Fig. 3

Environmental defects in Terc−/− mice induce increased mobilization and cell proliferation in hematopoietic stem and progenitor cells. (PDF 45 kb)

Supplementary Table 1

Altered cytokine profile in aged Terc−/− mice. (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, Z., Jiang, H., Jaworski, M. et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13, 742–747 (2007). https://doi.org/10.1038/nm1578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1578

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing