Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis

Abstract

Detection of cyclic-di-adenosine monophosphate (c-di-AMP), a bacterial second messenger, by the host cytoplasmic surveillance pathway (CSP) is known to elicit type I interferon (IFN) responses, which are crucial to antimicrobial defense1,2,3. However, the mechanisms and role of c-di-AMP signaling in Mycobacterium tuberculosis virulence remain unclear. Here we show that resistance to tuberculosis requires CSP-mediated detection of c-di-AMP produced by M. tuberculosis and that levels of c-di-AMP modulate the fate of infection. We found that a di-adenylate cyclase (disA or dacA)4-overexpressing M. tuberculosis strain that secretes excess c-di-AMP activates the interferon regulatory factor (IRF) pathway with enhanced levels of IFN-β, elicits increased macrophage autophagy, and exhibits substantial virulence attenuation in mice. We show that c-di-AMP-mediated IFN-β induction during M. tuberculosis infection requires stimulator of interferon genes (STING)5-signaling. We observed that c-di-AMP induction of IFN-β is independent of the cytosolic nucleic acid receptor cyclic GMP-AMP (cGAMP) synthase (cGAS)6,7, but cGAS nevertheless contributes substantially to the overall IFN-β response to M. tuberculosis infection. In sum, our results reveal c-di-AMP to be a key mycobacterial pathogen-associated molecular pattern (PAMP) driving host type I IFN responses and autophagy. These findings suggest that modulating the levels of this small molecule may lead to novel immunotherapeutic strategies against tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of host cytokine responses and intracellular growth of M. tuberculosis by c-di-AMP.
Figure 2: c-di-AMP produced by M. tuberculosis induces autophagy in macrophage cells.
Figure 3: Attenuation of virulence and pathogenicity in a c-di-AMP–overproducing M. tuberculosis strain.
Figure 4: Contribution of STING and cytosolic DNA receptor cGAS to c-di-AMP mediated activation of IFN-β during M. tuberculosis infection.

Similar content being viewed by others

References

  1. Corrigan, R.M. & Grundling, A. Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11, 513–524 (2013).

    CAS  PubMed  Google Scholar 

  2. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Römling, U. Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Sci. Signal. 1, pe39 (2008).

    PubMed  Google Scholar 

  4. Bai, Y. et al. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS ONE 7, e35206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Burdette, D.L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  7. Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903–906 (2013).

    CAS  PubMed  Google Scholar 

  8. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  Google Scholar 

  9. McWhirter, S.M. et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206, 1899–1911 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Parvatiyar, K. et al. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13, 1155–1161 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  12. Paludan, S.R. & Bowie, A.G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nelson, J.W. et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9, 834–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, L., Li, W. & He, Z.G. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J. Biol. Chem. 288, 3085–3096 (2013).

    CAS  PubMed  Google Scholar 

  15. Abdul-Sater, A.A. et al. The overlapping host responses to bacterial cyclic dinucleotides. Microbes Infect. 14, 188–197 (2012).

    CAS  PubMed  Google Scholar 

  16. Watson, R.O., Manzanillo, P.S. & Cox, J.S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Manzanillo, P.S., Shiloh, M.U., Portnoy, D.A. & Cox, J.S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11, 469–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Škrnjug, I. et al. The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS ONE 9, e95728 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Platanias, L.C. Mechanisms of type-I and type-II interferon–mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

    CAS  PubMed  Google Scholar 

  21. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schoggins, J.W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2014).

    CAS  PubMed  Google Scholar 

  23. Pandey, A.K. et al. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog. 5, e1000500 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Yang, J. et al. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol. Microbiol. 93, 65–79 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Agarwal, N., Lamichhane, G., Gupta, R., Nolan, S. & Bishai, W.R. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98–102 (2009).

    CAS  PubMed  Google Scholar 

  26. Schwartz, K.T. et al. Hyperinduction of host β-interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect. Immun. 80, 1537–1545 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barker, J.R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio. 4, e00018–e00013 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dey, B. & Bishai, W.R. Crosstalk between Mycobacterium tuberculosis and the host cell. Semin. Immunol. 26, 486–496 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Manca, C. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce TH1-type immunity and is associated with induction of IFN-α/β. Proc. Natl. Acad. Sci. USA 98, 5752–5757 (2001).

    CAS  PubMed  Google Scholar 

  30. Dorhoi, A. et al. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics. Eur. J. Immunol. 44, 2380–2393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuchtey, J., Chefalo, P.J., Gray, R.C., Ramachandra, L. & Harding, C.V. Enhancement of dendritic cell antigen cross-presentation by CpG DNA involves type I IFN and stabilization of class I MHC mRNA. J. Immunol. 175, 2244–2251 (2005).

    CAS  PubMed  Google Scholar 

  32. Thornley, T.B. et al. Type 1 IFN mediates cross-talk between innate and adaptive immunity that abrogates transplantation tolerance. J. Immunol. 179, 6620–6629 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Desvignes, L., Wolf, A.J. & Ernst, J.D. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J. Immunol. 188, 6205–6215 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Berry, M.P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Garra, A. et al. The immune response in tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).

    CAS  PubMed  Google Scholar 

  36. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    CAS  PubMed  Google Scholar 

  37. Campbell, G.R. & Spector, S.A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 8, e1002689 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, J.J. et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 11, 457–468 (2012).

    CAS  PubMed  Google Scholar 

  39. Schmeisser, H., Bekisz, J. & Zoon, K.C. New function of type I IFN: induction of autophagy. J. Interferon Cytokine Res. 34, 71–78 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Manca, C. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon Cytokine Res. 25, 694–701 (2005).

    CAS  PubMed  Google Scholar 

  41. DasGupta, S.K., Jain, S., Kaushal, D. & Tyagi, A.K. Expression systems for study of mycobacterial gene regulation and development of recombinant BCG vaccines. Biochem. Biophys. Res. Commun. 246, 797–804 (1998).

    CAS  PubMed  Google Scholar 

  42. Corrigan, R.M., Abbott, J.C., Burhenne, H., Kaever, V. & Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The support of grants AI037856, AI097138 and AI036973 from the US National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute to W.R.B. is gratefully acknowledged. We thank MicFac facility members at Johns Hopkins Medical Institutions (JHMI) for helping with the fluorescence and confocal microscopy. We thank H.W. Virgin IV and D. MacDuff (Washington University School of Medicine in St. Louis), for generously providing bone marrow cells from cGAS-KO mice. We thank L.H. Moulton (Bloomberg School of Public Health, Johns Hopkins University) for generous assistance with the statistical analysis. We thank A. Tyagi (University of Delhi South Campus, New Delhi) and W. Jacobs, Jr. (Albert Einstein College of Medicine, New York) for mycobacterial cloning vectors.

Author information

Authors and Affiliations

Authors

Contributions

B.D., R.J.D. and W.R.B. designed the research. B.D., R.J.D. and L.S.C. performed the experiments. H.G. contributed to mouse experiments. S.P. contributed to mouse, BMDM and DMDC experiments. J.-H.L. contributed to LC-MS analysis. B.D., R.J.D. and W.R.B. analyzed the data and wrote the paper. W.R.B. provided overall supervision of the study.

Corresponding author

Correspondence to William R Bishai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, B., Dey, R., Cheung, L. et al. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21, 401–406 (2015). https://doi.org/10.1038/nm.3813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing