Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An acetate switch regulates stress erythropoiesis

Abstract

The hormone erythropoietin (EPO), which is synthesized in the kidney or liver of adult mammals, controls erythrocyte production and is regulated by the stress-responsive transcription factor hypoxia-inducible factor-2 (HIF-2). We previously reported that the lysine acetyltransferase CREB-binding protein (CBP) is required for HIF-2α acetylation and efficient HIF-2–dependent EPO induction during hypoxia. We now show that these processes require acetate-dependent acetyl CoA synthetase 2 (ACSS2). In human Hep3B hepatoma cells and in EPO-generating organs of hypoxic or acutely anemic mice, acetate levels rise and ACSS2 is required for HIF-2α acetylation, CBP–HIF-2α complex formation, CBP–HIF-2α recruitment to the EPO enhancer and efficient induction of EPO gene expression. In acutely anemic mice, acetate supplementation augments stress erythropoiesis in an ACSS2-dependent manner. Moreover, in acquired and inherited chronic anemia mouse models, acetate supplementation increases EPO expression and the resting hematocrit. Thus, a mammalian stress-responsive acetate switch controls HIF-2 signaling and EPO induction during pathophysiological states marked by tissue hypoxia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acss2 controls HIF-2 signaling in hypoxic cells.
Figure 2: Acss2 regulates hypoxia-induced renal Epo expression in mice.
Figure 3: Acute anemia induces Acss2-dependent HIF-2 signaling in mice.
Figure 4: An acetate switch regulates Cbp–HIF-2 interactions in cells.
Figure 5: Acss2 signaling in cells requires intact HIF-2 acetylation.
Figure 6: Acetate facilitates recovery from anemia.

Similar content being viewed by others

References

  1. Bunn, H.F. & Poyton, R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76, 839–885 (1996).

    CAS  PubMed  Google Scholar 

  2. Richalet, J.P. Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. Comp. Biochem. Physiol. A Physiol. 118, 9–14 (1997).

    CAS  PubMed  Google Scholar 

  3. Koury, M.J. Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. Exp. Hematol. 33, 1263–1270 (2005).

    CAS  PubMed  Google Scholar 

  4. Wang, G.L., Jiang, B.H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92, 5510–5514 (1995).

    CAS  PubMed  Google Scholar 

  5. Semenza, G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24, 97–106 (2009).

    CAS  Google Scholar 

  6. Semenza, G.L. Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114, 2015–2019 (2009).

    CAS  PubMed  Google Scholar 

  7. Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    CAS  PubMed  Google Scholar 

  8. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 94, 4273–4278 (1997).

    CAS  PubMed  Google Scholar 

  9. Flamme, I. et al. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor 1α and developmentally expressed in blood vessels. Mech. Dev. 63, 51–60 (1997).

    CAS  PubMed  Google Scholar 

  10. Warnecke, C. et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1α and HIF-2α (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2α target gene in Hep3B and Kelly cells. FASEB J. 18, 1462–1464 (2004).

    CAS  PubMed  Google Scholar 

  11. Scortegagna, M., Morris, M.A., Oktay, Y., Bennett, M. & Garcia, J.A. The HIF family member EPAS1/HIF-2α is required for normal hematopoiesis in mice. Blood 102, 1634–1640 (2003).

    CAS  PubMed  Google Scholar 

  12. Scortegagna, M. et al. HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 105, 3133–3140 (2005).

    CAS  PubMed  Google Scholar 

  13. Dioum, E.M. et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293 (2009).

    CAS  PubMed  Google Scholar 

  14. Rankin, E.B. et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 1068–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kapitsinou, P.P. et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039–3048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, R. et al. The acetylase/deacetylase couple CREB-binding protein/sirtuin 1 controls hypoxia-inducible factor 2 signaling. J. Biol. Chem. 287, 30800–30811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. & Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    CAS  PubMed  Google Scholar 

  18. Kim, J.W., Tchernyshyov, I., Semenza, G.L. & Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  19. Zaidi, N., Swinnen, J.V. & Smans, K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709–3714 (2012).

    CAS  PubMed  Google Scholar 

  20. Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K. & Yamamoto, T.T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420–11426 (2001).

    CAS  PubMed  Google Scholar 

  21. Luong, A., Hannah, V.C., Brown, M.S. & Goldstein, J.L. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 275, 26458–26466 (2000).

    CAS  PubMed  Google Scholar 

  22. Loikkanen, I., Haghighi, S., Vainio, S. & Pajunen, A. Expression of cytosolic acetyl-CoA synthetase gene is developmentally regulated. Mech. Dev. 115, 139–141 (2002).

    CAS  PubMed  Google Scholar 

  23. Barth, C., Sladek, M. & Decker, K. The subcellular distribution of short-chain fatty acyl-CoA synthetase activity in rat tissues. Biochim. Biophys. Acta 248, 24–33 (1971).

    CAS  PubMed  Google Scholar 

  24. Wellen, K.E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, R., Dioum, E.M., Hogg, R.T., Gerard, R.D. & Garcia, J.A. Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J. Biol. Chem. 286, 13869–13878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshii, Y. et al. Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci. 100, 821–827 (2009).

    CAS  PubMed  Google Scholar 

  27. Lord, B.I. & Murphy, M.J. Jr. Hematopoietic stem cell regulation. II. Chronic effects of hypoxic-hypoxia on CFU kinetics. Blood 42, 89–98 (1973).

    CAS  PubMed  Google Scholar 

  28. McBrian, M.A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310–321 (2013).

    CAS  PubMed  Google Scholar 

  29. Hjelmeland, A.B. et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 18, 829–840 (2011).

    CAS  PubMed  Google Scholar 

  30. Laderoute, K.R. et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell. Biol. 26, 5336–5347 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leelahavanichkul, A. et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 78, 1136–1153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brox, A.G., Zhang, F., Guyda, H. & Gagnon, R.F. Subtherapeutic erythropoietin and insulin-like growth factor-1 correct the anemia of chronic renal failure in the mouse. Kidney Int. 50, 937–943 (1996).

    CAS  PubMed  Google Scholar 

  33. Russell, E.S. Analysis of pleiotropism at the W-locus in the mouse; relationship between the effects of W and Wv substitution on hair pigmentation and on erythrocytes. Genetics 34, 708–723 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kabaya, K. et al. Improvement of anemia in W/WV mice by recombinant human erythropoietin (rHuEPO) mediated through EPO receptors with lowered affinity. Life Sci. 57, 1067–1076 (1995).

    CAS  PubMed  Google Scholar 

  35. Tonia, T. et al. Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst. Rev. 12, CD003407 (2012).

    PubMed  Google Scholar 

  36. Cao, Y. Erythropoietin in cancer: a dilemma in risk therapy. Trends Endocrinol. Metab. 24, 190–199 (2013).

    CAS  PubMed  Google Scholar 

  37. Zhou, B. et al. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal. J. Clin. Invest. 124, 553–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamashita, H., Kaneyuki, T. & Tagawa, K. Production of acetate in the liver and its utilization in peripheral tissues. Biochim. Biophys. Acta 1532, 79–87 (2001).

    CAS  PubMed  Google Scholar 

  39. O'Connor, P.M. Renal oxygen delivery: matching delivery to metabolic demand. Clin. Exp. Pharmacol. Physiol. 33, 961–967 (2006).

    CAS  PubMed  Google Scholar 

  40. Jungermann, K. & Kietzmann, T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 31, 255–260 (2000).

    CAS  PubMed  Google Scholar 

  41. Rabkin, M. & Blum, J.J. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate. Biochem. J. 225, 761–786 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Crabtree, B., Gordon, M.J. & Christie, S.L. Measurement of the rates of acetyl-CoA hydrolysis and synthesis from acetate in rat hepatocytes and the role of these fluxes in substrate cycling. Biochem. J. 270, 219–225 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Crabtree, B., Marr, S.A., Anderson, S.E. & MacRae, J.C. Measurement of the rate of substrate cycling between acetate and acetyl-CoA in sheep muscle in vivo. Effects of infusion of acetate. Biochem. J. 243, 821–827 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Crabtree, B. & Newsholme, E.A. Sensitivity of a near-equilibrium reaction in a metabolic pathway to changes in substrate concentration. Eur. J. Biochem. 89, 19–22 (1978).

    CAS  PubMed  Google Scholar 

  45. Gordon, M.J. & Crabtree, B. The effects of propionate and butyrate on acetate metabolism in rat hepatocytes. Int. J. Biochem. 24, 1029–1031 (1992).

    CAS  PubMed  Google Scholar 

  46. Waniewski, R.A. & Martin, D.L. Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18, 5225–5233 (1998).

    CAS  PubMed  Google Scholar 

  47. Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bracken, C.P. et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment. J. Biol. Chem. 281, 22575–22585 (2006).

    CAS  PubMed  Google Scholar 

  50. Wu, D.C. & Paulson, R.F. Hypoxia regulates BMP4 expression in the murine spleen during the recovery from acute anemia. PLoS ONE 5, e11303 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Ball, A.M. & Winstead, P.S. Recombinant human erythropoietin therapy in critically ill Jehovah's Witnesses. Pharmacotherapy 28, 1383–1390 (2008).

    CAS  PubMed  Google Scholar 

  52. Mansell, M.A. & Wing, A.J. Acetate or bicarbonate for haemodialysis? Br. Med. J. (Clin. Res. Ed.) 287, 308–309 (1983).

    CAS  Google Scholar 

  53. Suzuki, M. & Hirasawa, Y. Correction of metabolic acidosis and changes in plasma acetate levels in acetate and bicarbonate dialyses and acetate-free biofiltration. Contrib. Nephrol. 108, 114–120 (1994).

    CAS  PubMed  Google Scholar 

  54. Veech, R.L. & Gitomer, W.L. The medical and metabolic consequences of administration of sodium acetate. Adv. Enzyme Regul. 27, 313–343 (1988).

    CAS  PubMed  Google Scholar 

  55. Masuda, A. et al. Effects of acetate-free citrate dialysate on glycoxidation and lipid peroxidation products in hemodialysis patients. Nephron Extra. 2, 256–268 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Grover, A. et al. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. J. Exp. Med. 211, 181–188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ariyannur, P.S. et al. Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J. Comp. Neurol. 518, 2952–2977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chavez, J.C., Baranova, O., Lin, J. & Pichiule, P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J. Neurosci. 26, 9471–9481 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nat. Genet. 35, 331–340 (2003).

    CAS  PubMed  Google Scholar 

  60. Kojima, I. et al. Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J. Am. Soc. Nephrol. 18, 1218–1226 (2007).

    CAS  PubMed  Google Scholar 

  61. Sun, D., Melegari, M., Sridhar, S., Rogler, C.E. & Zhu, L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41, 59–63 (2006).

    CAS  PubMed  Google Scholar 

  62. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    CAS  PubMed  Google Scholar 

  63. Sowter, H.M., Raval, R.R., Moore, J.W., Ratcliffe, P.J. & Harris, A.L. Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res. 63, 6130–6134 (2003).

    CAS  PubMed  Google Scholar 

  64. Aprelikova, O. et al. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J. Cell. Biochem. 92, 491–501 (2004).

    CAS  PubMed  Google Scholar 

  65. Carroll, V.A. & Ashcroft, M. Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res. 66, 6264–6270 (2006).

    CAS  PubMed  Google Scholar 

  66. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    CAS  PubMed  Google Scholar 

  67. Shimano, H. et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115–2124 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Itano, H.A., Hirota, K. & Hosokawa, K. Mechanism of induction of haemolytic anaemia by phenylhydrazine. Nature 256, 665–667 (1975).

    CAS  PubMed  Google Scholar 

  69. Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).

    CAS  PubMed  Google Scholar 

  70. Denenberg, V.H. A primer for behavioral research. Ment. Retard. Dev. Disabil. Res. Rev. 2, 209–215 (1996).

    Google Scholar 

Download references

Acknowledgements

We thank R. Hogg, A. Das, J. Colunga, S. Nystrom and E. Ballard for technical assistance. We thank D. Trono, École Polytechnique Fédérale de Lausanne, for making the lentiviral packaging and envelope plasmids available to us through Addgene. These studies were supported by funds provided by the US Department of Veterans Affairs (I01BX000446 to J.A.G.) and the US National Institutes of Health (HL108104 to J.A.G.; HL20948 to J.D.H.; and DK79328 to C.-L.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.X., J.S.N. and R.C. conducted the majority of experiments; J.L. and R.D.G. contributed to the protein and viral studies; J.X. and C.-L.H. generated the partial nephrectomy CRF mice and assisted in their evaluation; H.W., Y.-A.M., J.D.H. and R.E.H. generated the Acss2-knockout mouse model; S.A.C. and R.E.H. developed and assisted with Acss2 immunohistochemistry studies; J.A.G. wrote the manuscript and prepared the figures; M.X., J.S.N., R.C., R.D.G., J.X., C.-L.H., J.D.H., S.A.C. and R.E.H. assisted with editing of the manuscript; and R.C. and J.A.G. designed and supervised the project and analyzed the data.

Corresponding authors

Correspondence to Rui Chen or Joseph A Garcia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 19084 kb)

Supplementary Data Set

Supplementary Data Set (XLSX 215 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Nagati, J., Xie, J. et al. An acetate switch regulates stress erythropoiesis. Nat Med 20, 1018–1026 (2014). https://doi.org/10.1038/nm.3587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing