Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor–induced entry into the cell cycle from quiescence

Abstract

Engagement of antigen receptors triggers the proliferation and functional activation of lymphocytes. Here we report that T cell homeostasis and antigen-induced responses require the COP9 signalosome (CSN), a regulator of the ubiquitin-proteasome system. Conditional deletion of the CSN subunit Csn8 in peripheral T lymphocytes disrupted formation of the CSN complex, reduced T cell survival and proliferation in vivo and impaired antigen-induced production of interleukin 2. Moreover, Csn8-deficient T cells showed defective entry into the cell cycle from the G0 quiescent state. This phenotype was associated with a lack of signal-induced expression of cell cycle–related genes, including G1 cyclins and cyclin-dependent kinases, and with excessive induction of p21Cip1. Our data define a CSN-dependent pathway of transcriptional control that is essential for antigen-induced initiation of T cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Csn8 is essential for mammalian embryonic development.
Figure 2: Loss of Csn8 impairs peripheral T cell homeostasis.
Figure 3: Defective activation of Csn8-deficient T cells.
Figure 4: Csn8 is required for TCR-induced proliferation.
Figure 5: Quiescent Csn8-deficient MEFs fail to reenter the cell cycle.
Figure 6: Proximal TCR signaling events.
Figure 7: Expression of cell cycle regulators after TCR activation.
Figure 8: Defects in transcriptional regulation of cell cycle–related genes.

Similar content being viewed by others

References

  1. Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ruland, J. & Mak, T.W. From antigen to activation: specific signal transduction pathways linking antigen receptors to NFκB. Semin. Immunol. 15, 177–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Rowell, E.A. & Wells, A.D. The role of cyclin-dependent kinases in T-cell development, proliferation and function. Crit. Rev. Immunol. 26, 189–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Sage, J., Miller, A.L., Perez-Mancera, P.A., Wysocki, J.M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ren, S. & Rollins, B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117, 239–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Boylan, J.F., Sharp, D.M., Leffet, L., Bowers, A. & Pan, W. Analysis of site-specific phosphorylation of the retinoblastoma protein during cell cycle progression. Exp. Cell Res. 248, 110–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lea, N.C. et al. Commitment point during G0 → G1 that controls entry into the cell cycle. Mol. Cell. Biol. 23, 2351–2361 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grumont, R. et al. The mitogen-induced increase in T cell size involves PKC and NFAT activation of Rel/NF-κB-dependent c-Myc expression. Immunity 21, 19–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y.C. Ubiquitin ligases and the immune response. Annu. Rev. Immunol. 22, 81–127 (2004).

    Article  PubMed  Google Scholar 

  12. Wei, N. & Deng, X.W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 19, 261–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bech-Otschir, D., Seeger, M. & Dubiel, W. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115, 467–473 (2002).

    CAS  PubMed  Google Scholar 

  14. Zhou, C. et al. Fission yeast COP9/Signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol. Cell 11, 927–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Lyapina, S. et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382–1385 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Schwechheimer, C. et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292, 1379–1382 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Pan, Z.Q., Kentsis, A., Dias, D.C., Yamoah, K. & Wu, K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985–1997 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Cope, G.A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mundt, K.E., Liu, C. & Carr, A.M. Deletion mutants in COP9/signalosome subunits in fission yeast schizosaccharomyces pombe display distinct phenotypes. Mol. Biol. Cell 13, 493–502 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, C. et al. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev. 17, 1130–1140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X. et al. CSN1 N-terminal-dependent activity is required for Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol. Biol. Cell 13, 646–655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosel, D. & Kimmel, A.R. The COP9 signalosome regulates cell proliferation of Dictyostelium discoideum. Eur. J. Cell Biol. 85, 1023–1034 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wei, N. & Deng, X.W. COP9: a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 4, 1507–1518 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lykke-Andersen, K. et al. Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E and early embryonic death. Mol. Cell. Biol. 23, 6790–6797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan, J. et al. COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast. Mol. Cell. Biol. 23, 6798–6808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomoda, K., Yoneda-Kato, N., Fukumoto, A., Yamanaka, S. & Kato, J.Y. Multiple functions of Jab1 are required for early embryonic development and growth potential in mice. J. Biol. Chem. 279, 43013–43018 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Surh, C.D. & Sprent, J. Homeostatic T cell proliferation: how far can T cells be activated to self ligands? J. Exp. Med. 192, F9–F14 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Tough, D.F. & Sprent, J. Turnover of naive and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Fry, T.J. & Mackall, C.L. The many faces of IL7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Gudmundsdottir, H., Wells, A.D. & Turka, L.A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  33. Bjorklund, M. et al. Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439, 1009–1013 (2006).

    Article  PubMed  Google Scholar 

  34. Cope, G.A. & Deshaies, R.J. Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem. 9, 1 (2006).

    Article  Google Scholar 

  35. Denti, S., Fernandez Sanchez, M.E., Rogge, L. & Bianchi, E. The COP9 signalsome regulates Skp2 levels and proliferation of human cells. J. Biol. Chem. 281, 32188–32196 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Valerio Dorrello, N. et al. SCFßTRCP- and S6K1-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    Article  PubMed  Google Scholar 

  37. Kim, S.Y., Herbst, A., Tworkowski, K.A., Salghetti, S.E. & Tansey, W.P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl. Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yada, M. et al. Phosphoryltion-dependent degradation of c-Myc is mediated by F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei, N. & Deng, X.W. Characterization and purification of the mammalian COP9 complex, a conserved nuclear regulator initially identified as a repressor of photomorphogenesis in higher plants. Photochem. Photobiol. 68, 237–241 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Yoneda-Kato, N., Tomoda, K., Umehara, M., Arata, Y. & Kato, J.Y. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J. 24, 1739–1749 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, X. et al. The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr. Biol. 12, 667–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Inoue, Y., Kitagawa, M. & Taya, Y. Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J. 26, 2083–2093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tomoda, K., Kubota, Y. & Kato, J. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Tomoda, K. et al. The Jab1/COP9 signalosome subcomplex is a downstream mediator of Bcr-Abl kinase activity and facilitates cell-cycle progression. Blood 105, 775–783 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Fukumoto, A., Tomoda, K., Kubota, M., Kato, J.Y. & Yoneda-Kato, N. Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation. FEBS Lett. 579, 1047–1054 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Oron, E. et al. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development 129, 4399–4409 (2002).

    CAS  PubMed  Google Scholar 

  50. Ullah, Z., Buckley, M.S., Arnosti, D.N. & Henry, R.W. Retinoblastoma protein regulation by the COP9 signalosome. Mol. Biol. Cell 18, 1179–1186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Collins, G.A. & Tansey, W.P. The proteasome: a utility tool for transcription? Curr. Opin. Genet. Dev. 16, 197–202 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Reed (Harvard Medical School) for anti-SF3a; H. Zhang (Yale Medical School) for anti–cyclin A; N. Colburn (National Institutes of Health) for anti-Pdcd4; R. Pardi for communicating unpublished data; K. Lykke-Andersen for contributions to the design and initial construction of the targeting plasmid; and D. Chamovitz and R. Pardi for critical reading of the manuscript and discussions. Supported by the National Institutes of Health (R01-GM61812 to N.W., and R37-GM047850 to X.W.D.), the Arthritis Foundation (H.C.) and the Howard Hughes Medical Institute (R.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and H.C. designed and did T cell and MEF experiments; H.Z. and S.M. did Chromatin IP. S.M. together with the technical staff in R.A.F. lab generated the knockout strain. S.M. and N.W. bred mouse colonies and characterized the embryos. H.C., S.M. and N.W. analyzed data and wrote the manuscript; N.W. R.A.F. and X.W.D. provided advice and overall direction. The laboratories of N.W. and R.A.F. contributed equally to this study.

Corresponding author

Correspondence to Ning Wei.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Tables 1–2, Methods (PDF 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, S., Chi, H., Zhang, H. et al. COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor–induced entry into the cell cycle from quiescence. Nat Immunol 8, 1236–1245 (2007). https://doi.org/10.1038/ni1514

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1514

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing