Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The brightening future of HIV therapeutics

The natural history of human immunodeficiency virus (HIV) infection has been altered through the development of drugs targeting two key viral enzymes, reverse transcriptase and protease. Continued advances from basic science have unearthed many other points of attack in the HIV life cycle that could lead to new classes of HIV therapeutics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New inhibitors of HIV entry targeting three sequential steps in the HIV entry pathway have been or are being developed.
Figure 2: Antiviral action of APOBEC3G and the mechanism by which the HIV Vif defeats the antiviral effects of APOBEC3G.
Figure 3: Rhesus Trim5α corresponds to the a post-entry viral restriction factor that blocks HIV replication in rhesus macaque cells.

References

  1. Moore, J.P. & Doms, R.W. Proc. Natl. Acad. Sci. USA 100, 10598–10602 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kwong, P.D. et al. Nature 393, 648–659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna, G. et al. Abstract 141, 11th Conference on Retroviruses and Opportunistic Infections (San Francisco, California, 2004).

  4. Jacobson, J.M. et al. Antimicrob. Agents Chemother. 48, 423–429 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacobson, J.M. et al. J. Infect. Dis. 182, 326–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kuritzkes, D.R. et al. J. Infect. Dis. 189, 286–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Berger, E.A., Murphy, P.M. & Farber, J.M. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Dean, M. et al. Science 273, 1856–1862 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. De Clercq, E. J. Clin. Virol. 30, 115–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Fuller, M. & Anson, D.S. Curr. Gene Ther. 4, 65–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Chiu, T.K. & Davies, D.R. Curr. Top. Med. Chem. 4, 965–977 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Billich, A. Curr. Opin. Investig. Drugs 4, 206–209 (2003).

    CAS  PubMed  Google Scholar 

  13. Persaud, D., Zhou, Y., Siliciano, J.M. & Siliciano, R.F. J. Virol. 77, 1659–1665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greene, W.C. & Peterlin, B.M. Nat. Med. 8, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Stoddart, C.A. et al. J. Virol. 77, 2124–2133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheehy, A.M., Gaddis, N.C., Choi, J.D. & Malim, M.H. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W.C. Mol. Cell 12, 591–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Marin, M., Rose, K.M., Kozak, S.L. & Kabat, D. Nat. Med. 9, 1398–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sheehy, A.M., Gaddis, N.C. & Malim, M.H. Nat. Med. 9, 1404–1407 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, X. et al. Science 302, 1056–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Stremlau, M. et al. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, W. The brightening future of HIV therapeutics. Nat Immunol 5, 867–871 (2004). https://doi.org/10.1038/ni0904-867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0904-867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing