Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Groundwater activity on Mars and implications for a deep biosphere

Abstract

By the time eukaryotic life or photosynthesis evolved on Earth, the martian surface had become extremely inhospitable, but the subsurface of Mars could potentially have contained a vast microbial biosphere. Crustal fluids may have welled up from the subsurface to alter and cement surface sediments, potentially preserving clues to subsurface habitability. Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. Many ancient, deep basins lack evidence for groundwater activity. However, McLaughlin Crater, one of the deepest craters on Mars, contains evidence for Mg–Fe-bearing clays and carbonates that probably formed in an alkaline, groundwater-fed lacustrine setting. This environment strongly contrasts with the acidic, water-limited environments implied by the presence of sulphate deposits that have previously been suggested to form owing to groundwater upwelling. Deposits formed as a result of groundwater upwelling on Mars, such as those in McLaughlin Crater, could preserve critical evidence of a deep biosphere on Mars. We suggest that groundwater upwelling on Mars may have occurred sporadically on local scales, rather than at regional or global scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of exhumed deep crustal rocks on Mars.
Figure 2: Major evolutionary events on Earth compared with geologic evolution of Mars.
Figure 3: Synthesis model of subsurface geology and habitability on Mars at indicated depths.
Figure 4: Mineralogy and geomorphology of McLaughlin Crater.
Figure 5: Geology of McLaughlin Crater.
Figure 6: A survey of evidence for groundwater upwelling in deep craters.

References

  1. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

    Article  Google Scholar 

  2. Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  Google Scholar 

  3. Carter, J. Etude des minéraux hydratés à la suface de Mars par les imageurs hyper-spectraux OMEGA/MEx et CRISM/MRO PhD thesis, Université Paris-Sud (2010).

  4. Ehlmann, B. L. et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2009).

    Article  Google Scholar 

  5. Fairén, A. G. et al. Noachian and more recent phyllosilicates in impact craters on Mars. Proc. Natl Acad. Sci. 107, 12095–12100 (2010).

    Article  Google Scholar 

  6. McGovern, P. J. et al. Correction to and ‘localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution’. J. Geophys. Res. 109, 1–5 (2004).

    Google Scholar 

  7. Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H. & de Wit, M. Early life recorded in archean pillow lavas. Science 304, 578–581 (2004).

    Article  Google Scholar 

  8. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  Google Scholar 

  9. Heberling, C., Lowell, R. P., Liu, L. & Fisk, M. R. Extent of the microbial biosphere in the oceanic crust. Geochem. Geophy. Geosyst. 11, Q08003 (2010).

    Article  Google Scholar 

  10. Martin, W. F. Early evolution without a tree of life. Biol. Direct. 6, 36 (2011).

    Article  Google Scholar 

  11. Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article  Google Scholar 

  12. Andrews-Hanna, J. C., Zuber, M. T., Arvidson, R. E. & Wiseman, S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 115, E06002 (2010).

    Article  Google Scholar 

  13. Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev.http://dx.doi.org/10.1007/s11214-012-9943-8 (2012).

  14. Christensen, P. R. Water at the poles and in permafrost regions of Mars. Elements 2, 151–155 (2006).

    Article  Google Scholar 

  15. Forget, F., Haberle, R. M., Montmessin, F., Levrard, B. & Heads, J. W. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006).

    Article  Google Scholar 

  16. Head, J. W., Mustard, J. F., Kreslavsky, M. A, Milliken, R. E. & Marchant, D. R. Recent ice ages on Mars. Nature 426, 797–802 (2003).

    Article  Google Scholar 

  17. Jakosky, B. & Carr, M. H. Possible precipitation of ice at low latitudes on Mars during periods of high obliquity. Nature 315, 559–561 (1985).

    Article  Google Scholar 

  18. Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010).

    Article  Google Scholar 

  19. Burt, D. M. & Knauth, L. P. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026 (2003).

    Article  Google Scholar 

  20. Cintala, M. & Grieve, R. A. F. Scaling impact melting and crater dimensions: Implications for the lunar cratering record. Meteorit. Planet. Sci. 33, 889–912 (1998).

    Article  Google Scholar 

  21. Rogers, A. D. Crustal compositions exposed by impact craters in the Tyrrhena Terra region of Mars: Considerations for Noachian environments. Earth Planet. Sci. Lett. 301, 353–364 (2011).

    Article  Google Scholar 

  22. Murchie, S. L. et al. Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter’s primary science phase. J. Geophys. Res. 114, E00D07 (2009).

    Google Scholar 

  23. Osterloo, M. M., Anderson, F. S., Hamilton, V. E. & Hynek, B. M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).

    Article  Google Scholar 

  24. Bibring, J-P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006).

    Article  Google Scholar 

  25. Poulet, F. et al. Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005).

    Article  Google Scholar 

  26. Tanaka, K. L. Dust and ice deposition in the Martian geologic record. Icarus 144, 254–266 (2000).

    Article  Google Scholar 

  27. Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29, 2179 (2002).

    Article  Google Scholar 

  28. Hurowitz, J. A., Fischer, W., Tosca, N. J. & Milliken, R. E. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nature Geosci. 3, 323–326 (2010).

    Article  Google Scholar 

  29. Fisk, M. R. & Giovannoni, S. J. Sources of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res. 104, 11805–11815 (1999).

    Article  Google Scholar 

  30. Sleep, N. H. & Zahnle, K. Refugia from asteroid impacts on early Mars and the early Earth. J. Geophys. Res. 103, 28529–28544 (1998).

    Article  Google Scholar 

  31. Reith, F. Life in the deep subsurface. Geology 39, 287–288 (2011).

    Article  Google Scholar 

  32. Hellevang, H., Huang, S. S. & Thorseth, I. H. The potential for low-temperature abiotic hydrogen generation and a hydrogen-driven deep biosphere. Astrobiology 11, 711–724 (2011).

    Article  Google Scholar 

  33. Lin, L. H. et al. Radiolytic H-2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem. Geophy. Geosyst. 6, Q07003 (2005).

    Article  Google Scholar 

  34. Hirose, T., Kawagucci, S. & Suzuki, K. Mechanoradical H-2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere. Geophys. Res. Lett. 38, L17303 (2011).

    Article  Google Scholar 

  35. Steele, A. et al. A reduced organic carbon component in martian basalts. Science 337, 212–215 (2012).

    Article  Google Scholar 

  36. Holden, J. F. & Feinberg, L. F. in Astrobiology and Planetary Missions Vol. 5906 (eds Hoover, R. B., Levin, G. V., Rozanov, A. Y. & Gladstone, G. R.) (International Society for Optical Engineering, 2005).

    Google Scholar 

  37. Holm, N. G. The significance of Mg in prebiotic geochemistry. Geobiology 10, 269–279 (2012).

    Article  Google Scholar 

  38. Fredrickson, J. K. & Balkwill, D. Geomicrobiological processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol. J. 23, 345–356 (2006).

    Article  Google Scholar 

  39. Blank, J. G. et al. An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site. Planet. Space Sci. 57, 533–540 (2009).

    Article  Google Scholar 

  40. Parnell, J. et al. Sulfur isotope signatures for rapid colonization of an impact crater by thermophilic microbes. Geology 38, 271–274 (2010).

    Article  Google Scholar 

  41. Mader, H. M., Pettitt, M. E., Wadham, J. L., Wolff, E. W. & Parkes, R. J. Subsurface ice as a microbial habitat. Geology 34, 169–172 (2006).

    Article  Google Scholar 

  42. Robbins, S. J. & Hynek, B. M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. 117, E05004 (2012).

    Google Scholar 

  43. Ehlmann, B. L. et al. Orbital identification of carbonate-bearing rocks on mars. Science 322, 1828–1832 (2008).

    Article  Google Scholar 

  44. Michalski, J., Poulet, F., Bibring, J. P. & Mangold, N. Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data. Icarus 206, 269–289 (2010).

    Article  Google Scholar 

  45. Bouma, A. H. Fine-grained submarine fans as possible recorders of long- and short-term climatic changes. Glob. Planet Change 28, 85–91 (2001).

    Article  Google Scholar 

  46. Piper, D. J. W. Sediments of the middle Cambrian burgess shale. Lethaia 5, 169–175 (1972).

    Article  Google Scholar 

  47. Zabrusky, K., Andrews-Hanna, J. & Wiseman, S. M. Reconstructing the distribution and depositional history of the sedimentary deposits of Arabia Terra, Mars. Icarus 220, 311–330 (2012).

    Article  Google Scholar 

  48. Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111, http://dx.doi.org/10.1029/2006je002754 (2006).

    Article  Google Scholar 

  49. McCollom, T. M. & Hynek, B. M. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438, 1129–1131 (2005).

    Article  Google Scholar 

  50. Niles, P. B. & Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geosci. 2, 215–220 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Clifford and K. Lewis for comments that greatly improved the manuscript. We acknowledge NASA’s Mars Data Analysis Program and the European Commission Marie Curie Actions for funding of various portions of this research.

Author information

Authors and Affiliations

Authors

Contributions

J.R.M. conceived of project, processed most of the data, and wrote most of the manuscript. J.P., P.B.N. and J.C. wrote portions of the paper. A.D.R. contributed analyses of the thermal infrared data and S.P.W. contributed analyses of impact deposits.

Corresponding author

Correspondence to Joseph R. Michalski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6703 kb)

Supplementary Information

Supplementary Information (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalski, J., Cuadros, J., Niles, P. et al. Groundwater activity on Mars and implications for a deep biosphere. Nature Geosci 6, 133–138 (2013). https://doi.org/10.1038/ngeo1706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1706

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing