Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic mosaicism in normal tissues of Wilms' tumour patients

Abstract

We describe the partial loss of heterozygosity (LOH) at chromosome 11 p loci in normal tissues (normal kidney and/or blood) from four of 67 Wilms' tumour patients. Autologous tumour DNA showed complete loss of the same, maternally derived, alleles. These observations indicate that the normal tissues were mosaic for cells heterozygous and homozygous for 11 p markers and that tumours subsequently developed from the homozygous cells that had undergone an 11 p somatic recombination event. We suggest that LOH for 11 p alleles is compatible with normal growth and differentiation and is significant pathologically only when accompanied by other genetic alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Breslow, N., Beckwith, J.B., Ciol, M. & Sharples, K. Age distribution of Wilms' tumor: report from the National Wilms' Tumor Study. Cancer Res. 48, 1653–1657 (1988).

    CAS  PubMed  Google Scholar 

  2. Matsunaga, E. Genetics of Wilms' tumor. Hum. Genet. 57, 231–246 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Koufos, A. et al. Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. Nature 309, 170–172 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Orkin, S.H., Goldman, D.S. & Sallan, S.E. Development of homozygosity for chromosome 11p markers in Wilms' tumor. Nature 309, 172–174 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Fearon, E.R., Vogelstein, B. & Feinberg, A.P. Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 309, 176–178 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Dao, D.D. et al. Genetic mechanisms of tumor-specific loss of 11p DNA sequences in Wilms' tumor. Am. J. hum. Genet. 41, 202–217 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wadey, R.B. et al. Loss of heterozygosity in Wilms' tumour involves two distinct regions of chromosome 11. Oncogene 5, 901–907 (1990).

    CAS  PubMed  Google Scholar 

  8. Schroeder, W.T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms' tumors. Am. J. hum. Genet. 40, 413–420 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Call, K.M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60, 509–520 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Gessler, M. et al. Homozygous deletion in Wilms' tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Huff, V. et al. Evidence for WT1 as a Wilms' tumor (WT) Gene: Intragenic germinal deletion in bilateral WT. Am. J. hum. Genet. 48, 997–1003 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Haber, D.A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Pelletier, J. et al. WT1 mutations contribute to abnormal genital system development and hereditary Wilms' tumour. Nature 353, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Huff, V., Villalba, F., Strong, L.C. & Saunders, G.F. Alteration of the WT1 gene in patients with Wilms' tumor and genitourinary anomalies. Am. J. hum. Genet. 49S, 44 (1991).

    Google Scholar 

  15. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Little, M.H. et al. Zinc finger point mutations within the WT1 gene in Wilms' tumor patients. Proc. natn. Acad. Sci. U.S.A. 89, 4791–4795 (1992).

    Article  CAS  Google Scholar 

  17. Reeve, A.E., Shih, S.A., Raizis, A.M. & Feinberg, A.P. Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells. Molec. cell. Biol. 9, 1799–1803 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mannens, M. et al. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumours. Hum. Genet. 81, 41–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Henry, I. et al. Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms' tumor and in familial adrenocortical carcinoma. Proc. natn. Acad. Sci. U.S.A. 86, 3247–3251 (1989).

    Article  CAS  Google Scholar 

  20. Wiedemann, H.R. Complexe malformatif familial avec hernie ombilicale et macroglossie—un “syndrome nouveau”? J. Genet. Hum. 13, 223–232 (1964).

    CAS  PubMed  Google Scholar 

  21. Beckwith, J.B. Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects 5, 188–196 (1969).

    Google Scholar 

  22. Sotela-Avila, C., Gonzalez-Crussi, F. & Fowler, J.W. Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J. Pediatr. 96, 47–50 (1980).

    Article  Google Scholar 

  23. Ping, A.J. et al. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am. J. hum. Genet. 44, 720–723 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms' tumor locus both map to 11p15.5. Am. J. hum Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grundy, P. et al. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet 338, 1079–1080 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–670 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Henry, I. et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-ferterlization event. Eur. J. hum. Genet. 1, 19–29 (1992).

    Article  Google Scholar 

  28. Compton, D.A. et al. Definition of the limits of the Wilms' tumor locus on human chromosome 11p13. Genomics 6, 309–315 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Schneid, H., Vazquez, M.P., Seurin, D. & le Bouc, Y. Loss of heterozygosity in non-tumoral tissue in two children with Beckwith-Wiedemann syndrome. Growth Regul. 1, 168–170 (1991).

    CAS  PubMed  Google Scholar 

  30. Clayton-Smith, J., Read, A.P. & Donnai, D. Monozygotic twinning and Wiedemann-Beckwith syndrome. Am J. med. Genet. 42, 633–637 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Fraumeni, J.F. & Geiser, C.F., Manning, M.D. Wilms' tumor and congenital hemihypertrophy: report of five new cases and review of the literature. Pediatrics 40, 886–899 (1967).

    PubMed  Google Scholar 

  32. Scrable, H. et al. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. natn. Acad. Sci. U.S.A. 86, 7480–7484 (1989).

    Article  CAS  Google Scholar 

  33. Williams, J.C., Brown, K.W., Mott, M.G. & Maitland, N.J. Maternal allele loss in Wilms' tumour. Lancet 1, 283–284 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Dowdy, S.F. et al. Suppression of tumorigenicity in Wilms' tumor by the 11p15.5-p14 region of chromosome 11. Science 254, 293–295 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Scott, J. et al. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature 317, 260–262 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Poirier, F. et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 113, 1105–1114 (1991).

    CAS  PubMed  Google Scholar 

  37. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Ferguson-Smith, A.C., Cattanach, B.M., Barton, S.C., Beechey, C.V. & Surani, A.M. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Brunkow, M.E. & Tilghman, S.M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5, 1092–1101 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Jeanpierre, C. et al. Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms' tumor. Genomics 7, 434–438 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Knudson, A.G. & Strong, L.C. Mutation and Cancer: A model for Wilms' tumor of the kidney. J. natn. Cancer Inst. 48, 313–324 (1972).

    Google Scholar 

  44. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huff, V., Compton, D.A., Strong, L.C. & Saunders, G.F. A panel of restriction fragment length polymorphisms for chromosomal band 11 p13. Hum Genet. 84, 253–257 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Capon, D.J., Chen, E.Y., Levinson, A.D., Seeburg, P.H. & Goeddel, D.V. Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302, 33–37 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Bell, G.I., Horita, S. & Karam, J.H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33, 176–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Barker, D., Holm, T. & White, R. A locus on chromosome 11 p with multiple restriction site polymorphisms. Am. J. hum. Genet. 36, 1159–1171 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hendy, G.N., Kronenberg, H.M., Potts, J.T., Jr. & Rich, A. Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone. Proc. natn. Acad. Sci. U.S.A. 78, 7365–7369 (1981).

    Article  CAS  Google Scholar 

  50. Nakamura, Y. et al. Isolation and mapping of a polymorphic DNA sequence (pHBI59) on chromosome 11 [D11S146]. Nucl. Acids Res. 16, 10404 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maslen, G.L. et al. Seven polymorphic loci mapping to human chromosomal region 11q22-qter. Genomics 2, 66–75 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Kessling, A.M., Horsthemke, B. & Humphries, S.E. A study of DNA polymorphisms around the human apolipoprotein A1 gene in hyperlipidaemic and normal individuals. Clin. Genet. 28, 296–306 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, LY., Huff, V., Tomlinson, G. et al. Genetic mosaicism in normal tissues of Wilms' tumour patients. Nat Genet 3, 127–131 (1993). https://doi.org/10.1038/ng0293-127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0293-127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing